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Abstract—Optimal data detection in massive multiple-input
multiple-output (MIMO) communication systems requires pro-
hibitive computational complexity. A variety of detection algo-
rithms have been proposed in the literature, offering different
trade-offs between complexity and detection error performance.
In this paper, we build upon variational Bayes (VB) inference,
a powerful statistical inference framework, to design efficient
and low-complexity data detection algorithms for massive MIMO
systems. We first examine the massive MIMO detection problem
with perfect channel state information at the receiver (CSIR)
and show that a conventional VB method with known noise
variance yields poor detection error performance. To address
this limitation, we devise two new VB algorithms that use
the noise variance and covariance matrix postulated by the
algorithms themselves. We further develop the VB framework
for massive MIMO detection with imperfect CSIR. Simulation
results show that the proposed VB methods achieve significantly
lower detection errors compared with existing schemes for a wide
range of channel models.

Index Terms—Approximate message passing, detection, estima-
tion, massive MIMO, soft interference cancellation, variational
Bayes inference.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) arrays are
a key technology for emerging 5G networks, enabling higher
spectral efficiency and improved coverage [1], [2]. A massive
MIMO base station (BS) can concurrently serve a large
number of users in the same time-frequency resource via space
division multiple access and highly directional beamforming.
However, the increase in the spatial dimension leads to large
channel matrices and makes low-complexity multi-user detec-
tion a formidable task.

The subject of massive MIMO detection has attracted
significant interest in recent years, with several contributions
offering different trade-offs between computational complexity
and detection error performance. Conventional detection algo-
rithms based on the maximum a-posteriori (MAP) and max-
imum likelihood (ML) criteria, which jointly recover all the
symbols simultaneously, achieve the optimal detection error
performance. However, their complexity increases exponen-
tially with the number of users. Linear detectors, such as the
matched filter (MF), zero forcing filter, and linear minimum
mean squared error (LMMSE) filter, consist of a simple linear
pre-processing step to decorrelate the received signal, enabling
separate symbol detection on a per-user basis. However, linear
detection simply treats the inter-user interference as noise and
can thus be highly sub-optimal compared with the MAP/ML
detectors, especially in systems with comparable numbers of
transmit and receive antennas. Interference cancellation is an

attractive alternative solution in terms of both complexity
and performance. This family of nonlinear detectors relies
on removing already detected symbols to facilitate detection
of the remaining ones. Although interference cancellation
is prone to error propagation, this issue can be mitigated
using soft detected symbols, resulting in the iterative soft
interference cancellation (SIC) method [3], [4]. Iterative SIC,
involving multiple iterations of symbol detection and interfer-
ence cancellation, can approach the performance of MAP/ML
with manageable complexity [5], [6].

Approximate message passing (AMP), originally developed
as a computationally efficient algorithm for the recovery of
sparse signals [7], has also been applied in the context of
massive MIMO detection [8]. In a MIMO system with inde-
pendent and identically distributed (i.i.d.) Gaussian channels,
AMP decouples the MIMO channel into a set of parallel ad-
ditive white Gaussian noise (AWGN) channels, thus enabling
separate symbol detection. In addition, AMP achieves the
minimum symbol error rate (SER) in the large-system limit
and shows a near-optimal performance for finite-dimensional
systems. More importantly, the superior SER performance
of AMP can be obtained with very low complexity. The
convergence of AMP is established through the algorithm’s
state evolution for i.i.d. Gaussian [9] and i.i.d. sub-Gaussian
channel matrices [10]. However, AMP may diverge when the
channel matrix is ill-conditioned or has non-zero mean. This
issue was partially dealt with by the recent development of
AMP-like algorithms, such as orthogonal AMP (OAMP) [11]
and vector AMP (VAMP) [12], which can easily be applied
to the MIMO detection problem. It is worth mentioning that
rigorous proofs of the state evolution in AMP-like algorithms
are generally quite technical and rely on specific assumptions
about the channel statistics, e.g., i.i.d. sub-Gaussian or unitarily
invariant channels.

Recently, the MIMO detection problem has been tackled
using variational Bayes (VB) inference [13]. VB inference
is a powerful statistical inference framework from machine
learning that approximates the intractable posterior distribution
of latent variables with a known family of simpler distributions
through optimization. Among VB methods, the mean-field
approximation enables efficient optimization of the variational
distribution over a partition of the latent variables while
keeping the variational distributions over the other partitions
fixed [14]. In this paper, we present the variational Bayesian
perspective on the massive MIMO detection problem and com-
pare it with the AMP-based (i.e., AMP and OAMP/VAMP)
and SIC methods. While it is common to assume that the noise
variance is known at the receiver, a conventional VB detector
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relying on knowledge of the noise variance as studied in [13]
may yield poor detection performance. We present an analysis
of this behavior by connecting the conventional VB detector
to the SIC method and make the recommendation to use the
noise variance or covariance matrix that is postulated by the
VB framework itself instead. We then develop several new VB
algorithms for massive MIMO detection based on closed-form
and computationally efficient updates. The resulting iterative
algorithms have low complexity that is comparable to that of
AMP-based schemes.

The contributions of this work are listed as follows.

• We present a comparison between conventional mean-
field VB and SIC methods and provide a new perspective
to explain the poor detection error performance of the
former. We propose two new mean-field VB algorithms
for massive MIMO detection with perfect channel state
information at the receiver (CSIR) based on the MF (MF-
VB) and LMMSE filter (LMMSE-VB), in which the
noise variance and covariance matrix are treated as ran-
dom variables and are thus postulated by the estimation
in the algorithms.

• We further develop MF-VB for the case of imperfect
CSIR. The proposed method enables joint estimation of
the channel matrix, the symbol vector, and the postulated
noise variance.

• We evaluate the performance of the developed VB al-
gorithms by comparing them with the LMMSE detec-
tor as well as the AMP-based and SIC schemes in
various channel settings. Numerical simulations using
i.i.d. Gaussian channels indicate that the detection error
performance of the developed VB algorithms is better
in finite-dimensional systems and comparable to that
of SER-optimal AMP-based algorithms for the large-
system limit. The VB algorithms, particularly LMMSE-
VB, exhibit superior detection performance in systems
with correlated channels, realistic 3GPP channels, and
channel estimation mismatch.

Notation. xij and [X]ij equivalently denote the element in
the ith row and jth column of a matrix X; xi is the ith column
of a matrix X; Tr{X} and |X| stand for the trace and the
determinant, respectively, of a square matrix X; CN (µ,Σ)
represents a complex Gaussian random vector with mean µ
and covariance matrix Σ; CN (x;µ,Σ) = 1/(πK |Σ|)exp

(
−

(x − µ)HΣ−1(x − µ)
)

denotes the probability distribution
function (PDF) of a length-K random vector x ∼ CN (µ,Σ);
Ep(x)[x] and Varp(x)[x] are the mean and the variance of x
with respect to its distribution p(x); ⟨x⟩,

〈
|x|2
〉
, and σ2

x =〈
|x|2
〉
−
∣∣⟨x⟩∣∣2 denote the mean, the second moment, and the

variance of x with respect to a variational distribution q(x); ∼
and ∝ stand for “distributed according to” and “proportional
to”, respectively.

Outline. The rest of the paper is organized as follows.
Section II describes the system model. Section III revisits the
MIMO detection problem with perfect CSIR, and Section IV
presents background on VB inference. Sections V and VI pro-
pose new VB methods for MIMO detection with perfect and
imperfect CSIR, respectively. Section VII provides numerical

results assessing the performance of the proposed algorithms.
Finally, Section VIII summarizes our contributions.

II. SYSTEM MODEL

We consider a MIMO system with K inputs and M outputs,
in which the received signal vector y ∈ CM is given by

y = Hx+ n. (1)

Here, H = [h1, . . . ,hK ] ∈ CM×K denotes the channel,
x = [x1, . . . , xK ] ∈ CK is the input signal vector, and
n ∼ CN (0, N0IM ) models the additive noise. Furthermore,
we define β = K/M as the system ratio. Without loss of
generality, we refer to the specific case of uplink transmission
with K single-antenna users and a M -antenna BS. We assume
that the transmitted symbol xi from user i is drawn from
a complex-valued discrete constellation S, e.g., quadrature
amplitude modulation (QAM) or phase-shift keying (PSK),
and is normalized such that E[xi] = 0 and E

[
|xi|2

]
= 1. The

prior distribution of xi is given by

p(xi) =
∑
a∈S

paδ(xi − a), (2)

where pa corresponds to the known prior probability of the
constellation point a ∈ S and δ(xi − a) indicates the mass
point at a.

Unless otherwise stated, we assume that the channel vector
hi ∈ CM associated with user i is Gaussian with p(hi) =
CN (hi;0,Ri), where Ri = E[hih

H
i ] is the covariance matrix.

It is noted that Ri is generally not a scaled identity matrix
and is typically modeled to reflect the spatial correlation and
the large-scale fading from user i to the BS [15]. Finally, we
assume that E[hih

H
j ] = 0 if i ̸= j. The objective of this paper

is to obtain an estimate x̂ of x from the observation y with
minimum mean squared detection error E

[
∥x− x̂∥2

]
.

III. MIMO DETECTION WITH PERFECT CSIR

This section revisits MIMO detection for systems with
perfect CSIR and describes some state-of-the-art methods that
will be used to benchmark the proposed VB algorithms in
Section VII.

A. Conventional MIMO Detection Schemes

When the distribution of x is discrete, an optimal detector
that minimizes the detection error can be obtained through the
MAP criterion:

x̂MAP = arg max
x∈SK

p(y|x;H)p(x)

= arg max
x∈SK

[
ln p(x)−N−1

0 ∥y −Hx∥2
]
. (3)

While the MAP detector (or the ML detector for uniform
p(xi)) is optimal in terms of SER, its complexity grows
exponentially with the number of inputs, making it infeasible
for large-scale MIMO detection. Linear detectors with low
complexity are practical candidates for massive MIMO sys-
tems. The estimated symbol is obtained via a linear combi-
nation of the received signal y, which is then projected onto
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the nearest symbol in the constellation S. Among the linear
detectors, the LMMSE detector achieves the best detection
error performance. This detector first obtains the LMMSE
estimate of x as

x̂LMMSE =
(
HHH+N0IK

)−1
HHy, (4)

which is then element-wise projected onto S . We note that
the LMMSE detector requires the inverse of a (K × K)-
dimensional matrix.

B. MIMO Detection via Approximate Message Passing

The AMP algorithm [7] was proposed as a computationally
efficient iterative method to recover a sparse vector x from
measurements in the form of (1). Initializing at iteration t = 1
with x̂1

i = Ep(xi)[xi], r1 = y, and ν21 = Varp(xi)[xi], the
AMP algorithm consists of the following steps:

zt = x̂t +HHrt, (linear estimator)

σ2
t = N0 + βν2t , (error variance of zt)

x̂t+1 = η(zt, σ2
t ), (nonlinear denoiser)

ν2t+1 = σ2
t

〈
η′(zt, σ2

t )
〉
, (error variance of xt+1)

rt+1 = y −Hx̂t+1 + β
ν2t+1

σ2
t

rt, (Onsager-corrected residual)

which are repeated until convergence or until a certain num-
ber of iterations is reached. Here, η(·, σ2

t ) : CK → CK

is a nonlinear denoising function parameterized by σ2
t and〈

η′(zt, σ2
t )
〉
= (1/K)Tr

{
∂η(zt, σ2

t )/∂z
t
}

is its divergence
at zt. When H is a large i.i.d. sub-Gaussian matrix, the
linear estimator applied to the Onsager-corrected residual
decouples the system into K parallel AWGN channels zi =
xi + CN (0, σ2

t ) [7], [12]. Thus, the denoiser is separable
and can be applied element-wise to zt. It is worth noting
that the postulated error variance σ2

t comprises two terms:
one that reflects the true noise variance N0 and one that
accounts for the error variance in the denoising step. The
AMP method was originally developed for real-valued system
models. The complex Bayesian AMP (cB-AMP) algorithm
presented above was recently analyzed for large-scale MIMO
detection with complex-valued symbols in [8]. The so-called
large MIMO AMP (LAMA) algorithm developed in [8]
employs a minimum mean squared error (MMSE) denoiser
η(zti , σ

2
t ) = F(zti , σ

2
t ), which is defined as the mean of the

posterior distribution p(xi|zti ;σ2
t ). Given G(zti , σ

2
t ) as the vari-

ance of the posterior distribution p(xi|zti ;σ2
t ), the divergence〈

F′(zt, σ2
t )
〉

is equal to
(
1/(Kσ2

t )
)∑K

i=1 G(z
t
i , σ

2
t ) [16]. Ef-

fectively, ν2t+1 = σ2
t

〈
F′(zt, σ2

t )
〉
= (1/K)

∑K
i=1 G(z

t
i , σ

2
t ) is

the empirical error variance of the MMSE denoiser F(zti , σ
2
t ).

The convergence of the AMP algorithm is rigorously es-
tablished through the algorithm’s state evolution for i.i.d.
Gaussian [9] and i.i.d. sub-Gaussian H [10]. However, AMP
diverges in many practical scenarios, e.g., in the case of ill-
conditioned or non-zero-mean H [12]. In the context of MIMO
detection, AMP diverges when the columns of H exhibit cor-
related elements or their vector norms are significantly uneven
due to users with different large-scale fading coefficients. This
limitation prompted the development of AMP-like algorithms

that converge for a larger class of matrices than i.i.d. sub-
Gaussian, including OAMP [11] and VAMP [12] for unitarily
invariant matrices.

While there are subtle differences between OAMP and
VAMP in terms of implementation, they are essentially equiv-
alent [17]. The OAMP/VAMP algorithm involves the itera-
tions between a linear estimator and a nonlinear denoiser.
Initializing at iteration t = 1 with x̂1

1 = Ep(xi)[xi] and
ν21 =

(
1/Tr{HHH}

)(
∥y∥2 − MN0

)
, the OAMP/VAMP

algorithm consists of the following steps:

Ât = ν2t (ν
2
tH

HH+N0IK)−1HH ,

At =
K

Tr{ÂtH}
Ât, (linear filter)

zt = x̂t +At(y −Hx̂t), (linear estimator)

σ2
t =

N0∥At∥2F +νt∥IK−AtH∥2F
K

, (error variance of zt)

x̂t+1 =
η(zt, σ2

t )−
〈
η′(zt, σ2

t )
〉
zt

1−
〈
η′(zt, σ2

t )
〉 , (nonlinear denoiser)

ν2t+1 =
∥y −Hx̂t+1∥2 −MN0

Tr{HHH}
, (error variance of xt+1)

which are repeated until convergence or until a certain num-
ber of iterations is reached. In OAMP/VAMP, the linear
filter Ât can be the MF HH (as in the AMP scheme),
the pseudo-inverse filter H†, or the LMMSE filter (as in
the form presented above). The linear estimate zt is passed
through a nonlinear denoiser which also removes the di-
vergence

〈
η′(zt, σ2

t )
〉

to obtain a divergence-free estimate
x̂t+1. Effectively, the OAMP/VAMP algorithm decouples the
linear MIMO channel into K parallel AWGN channels zi =
xi + CN (0, σ2

t ). In its optimal form, OAMP/VAMP adopts
the LMMSE filter and the MMSE denoiser, i.e., η(zt, σ2

t ) =
F(zt, σ2

t ) and
〈
η′(zt, σ2

t )
〉

=
(
1/(Kσ2

t )
)∑K

i=1 G(z
t
i , σ

2
t ).

Since OAMP/VAMP with the LMMSE filter significantly
outperforms its counterparts with MF and the pseudo-inverse
filter [11], we will only present numerical results for this
version and hereafter refer to it simply as the OAMP/VAMP
algorithm. Compared with AMP, OAMP/VAMP requires one
matrix inversion per iteration. Interestingly, the matrix inver-
sion in the LMMSE filter can be circumvented in the economy
form of OAMP/VAMP by first performing the singular value
decomposition of the channel. More details on the computation
of p(xi|zti ;σ2

t ), F(z
t
i , σ

2
t ), and G(zti , σ

2
t ) with discrete p(xi)

used in the AMP and OAMP/VAMP algorithms are given in
Appendix A, which also provides an expression for the final
MAP estimate x̂i.

IV. BACKGROUND ON VB INFERENCE

This section presents background on VB inference, which
we will exploit to solve the MIMO detection problem at hand.
The goal of VB inference is to find a suitable approximation
for a computationally intractable posterior distribution p(x|y)
given a probabilistic model that specifies the joint distribution
p(x,y). Here, y represents the set of all observed variables
and x represents the set of m latent variables and parameters.
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The VB method consists of finding a distribution function
q(x) within a family Q of distributions with its own set of
variational parameters that make q(x) as close as possible
to the posterior distribution of interest p(x|y). In particular,
VB inference amounts to solving the following optimization
problem:

q(x) = arg min
q(x)∈Q

KL
(
q(x)∥p(x|y)

)
, (5)

where

KL
(
q(x)∥p(x|y)

)
= Eq(x)

[
ln q(x)

]
− Eq(x)

[
ln p(x|y)

]
(6)

denotes the Kullback-Leibler (KL) divergence of q(x) from
p(x|y). Expanding p(x|y) reveals

KL
(
q(x)∥p(x|y)

)
= Eq(x)

[
ln q(x)

]
− Eq(x)

[
ln p(x,y)

]
+ ln p(y). (7)

Since p(y) does not depend on q(x), maximizing the evidence
lower bound (ELBO),1 defined as

ELBO(q) = Eq(x)

[
ln p(x,y)

]
− Eq(x)

[
ln q(x)

]
, (8)

is equivalent to minimizing the KL divergence. The maximum
possible value of ELBO(q) occurs when q(x) = p(x|y).

Since attempting to match the true posterior distribution
with an arbitrary q(x) is typically intractable, it is more
practical to consider a restricted family of distributions q(x).
Here, the mean-field variational family is constructed such that

q(x) =

m∏
i=1

qi(xi), (9)

where the latent variables are taken to be mutually independent
and each is governed by a distinct factor in the variational
distribution. Among all distributions q(x) having the form
in (9), the general expression for the optimal solution of the
variational distribution qi(xi) that maximizes the ELBO can
be obtained as [14]

qi(xi) ∝ exp
{〈

ln p(y|x) + ln p(x)
〉}

, (10)

where ⟨·⟩ denotes the expectation with respect to all latent
variables except xi using the currently fixed variational dis-
tribution q−i(x−i) =

∏
j ̸=i qj(xj). By iterating the update of

qi(xi) sequentially over all j, the ELBO(q) objective function
can be monotonically improved. This is the basis behind
the coordinate ascent variational inference (CAVI) algorithm,
which guarantees convergence to at least a local optimum of
ELBO(q) [14], [18].

In the following, we present a theorem on the variational
posterior mean of multiple random variables that will be
applied later in the paper.

Theorem 1. Let the random matrix A ∈ Cm×n and the
random vector x ∈ Cn be independent with respect to
a variational distribution q(A,x) = q(A)q(x). Assuming
that A is column-wise independent, let ⟨ai⟩ and Σai

de-
note the variational mean and covariance matrix, respec-
tively, of the ith column of A. Furthermore, let ⟨x⟩ and

1The negative of the ELBO is commonly referred to as the Gibbs free
energy.

Σx = diag(σ2
x1
, . . . , σ2

xn
) denote the variational mean and

covariance matrix, respectively, of x. Considering an arbitrary
vector y ∈ Cm and defining the expectation

〈
∥y−Ax∥2

〉
with

respect to q(A,x), we have〈
∥y −Ax∥2

〉
=
∥∥y − ⟨A⟩⟨x⟩

∥∥2 +Tr
{
⟨A⟩Σx⟨AH⟩

}
+

n∑
i=1

〈
|xi|
〉2
Tr{Σai}. (11)

Proof: Expanding
〈
∥y−Ax∥2

〉
and taking into account

the independence of A and x, we have〈
∥y −Ax∥2

〉
= ∥y∥2 − 2ℜ

{
yH⟨Ax⟩

}
+ ⟨xHAHAx⟩

=
∥∥y − ⟨A⟩⟨x⟩

∥∥2 − ⟨xH⟩⟨AH⟩⟨A⟩⟨x⟩
+Tr

{
⟨AHA⟩⟨xxH⟩

}
. (12)

Note that ⟨xxH⟩ = ⟨x⟩⟨xH⟩+Σx. In addition, we have[
⟨AHA⟩

]
ij

= ⟨aHi aj⟩

=

{
⟨aHi ⟩⟨ai⟩+Tr{Σai

}, if i = j
⟨aHi ⟩⟨aj⟩, otherwise. (13)

Thus, it follows that ⟨AHA⟩ = ⟨AH⟩⟨A⟩ +D, where D =
diag

(
Tr{Σa1

}, . . . ,Tr{Σan
}
)

and, as a result, we have

Tr
{
⟨AHA⟩⟨xxH⟩

}
= ⟨xH⟩⟨AH⟩⟨A⟩⟨x⟩

+Tr
{
⟨A⟩Σx⟨AH⟩

}
+ ⟨xH⟩D⟨x⟩+Tr{DΣx}. (14)

The proof is concluded by removing the duplicated
terms in (12) and exploiting the fact that ⟨x⟩HD⟨x⟩ +

Tr{DΣx} =
∑n

i=1

∣∣⟨xi⟩
∣∣2Tr{Σai

} +
∑n

i=1 σ
2
xi
Tr{Σai

} =∑n
i=1

〈
|xi|
〉2
Tr{Σai}.

Corollary 1. If A is deterministic, we have〈
∥y −Ax∥2

〉
=
∥∥y −A⟨x⟩

∥∥2 +Tr{AΣxA
H}. (15)

Proof: This is a direct result of Theorem 1 by exploiting
the fact that Tr{Σai} = 0, ∀i.

V. VB INFERENCE FOR MIMO DETECTION WITH
PERFECT CSIR

In this section, we apply VB inference to the MIMO
detection problem with known channel matrix H. We first
review the conventional mean-field VB framework with known
noise variance [13], which will be referred to in the following
as the conv-VB algorithm. We then compare conv-VB with the
SIC method [5] and identify its limitation with respect to the
latter. Lastly, we develop MF-VB and LMMSE-VB algorithms
for MIMO detection.

A. Conventional VB Inference with Known Noise Variance

With known noise statistics, the joint distribution
p(y,x;H, N0) can be factorized as

p(y,x;H, N0) = p(y|x;H, N0)p(x), (16)

with p(y|x;H, N0) = CN (y;Hx, N0IM ). Given the
observation y, the mean-field variational distribution
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gi(xi) = exp

{
ln p(xi)−N−1

0

(
∥hi∥2|xi|2 − 2ℜ

{
hH
i

(
y −

K∑
j ̸=i

hj⟨xj⟩
)
x∗
i

})}
. (18)

q(x) =
∏K

i=1 qi(xi) is derived to approximate the posterior
distribution p(x|y;H, N0). Expanding the conditional
p(y|x;H, N0)p(x), taking the expectation with respect to all
latent variables except xi using the variational distribution∏

j ̸=i qj(xj), and retaining only the components that are
related to xi, we have

qi(xi) ∝ exp
{〈

ln p(y|x;H, N0) + ln p(x)
〉}

∝ exp
{〈

ln p(x)−N−1
0 ∥y −Hx∥2

〉}
∝ exp

{
ln p(xi)−N−1

0

〈∥∥∥∥y − hixi −
K∑
j ̸=i

hjxj

∥∥∥∥2〉}
= gi(xi), (17)

where gi(xi) can be expanded as in (18) at the top of the page.
In the context of MIMO detection, the distribution qi(xi)

can be normalized such that

qi(a) =
gi(a)∑
b∈S gi(b)

, ∀a ∈ S. (19)

The variational mean ⟨xi⟩ with respect to qi(xi) is then given
by

⟨xi⟩ =
∑
a∈S

a qi(a). (20)

Here, ⟨xi⟩ can be interpreted as a soft detection of xi. By
iterating the update of qi(xi) and ⟨xi⟩ for i = 1, . . . ,K,
we attain the CAVI algorithm for soft symbol detection. This
procedure is summarized in Algorithm 1, where x̂t

i is used to
replace the variational mean ⟨xi⟩ at iteration t. The iterative
procedure is repeated until convergence or a until certain
number of iterations is reached. We note that Algorithm 1
corresponds to the version of the VB method for MIMO
detection developed in [13]. However, we observe in our
simulations that Algorithm 1 occasionally yields an NaN
error. This happens when the argument inside the exponential
function in (18) becomes too large. In the following, we
present an equivalent form of the variational distribution qi(xi)
that helps tackle this issue.

Let the variational mean ⟨xj⟩ be the current soft estimate
of symbol xj , ∀j, and denote

zi =
hH
i

∥hi∥2

(
y −

K∑
j ̸=i

hj⟨xj⟩
)
. (21)

Noting that zi is a constant with respect to the variational
distribution qi(xi), (17)–(18) can be rewritten as

qi(xi) ∝ p(xi) exp
{
−N−1

0 ∥hi∥2
(
|xi|2 − 2ℜ{x∗

i zi}
)}

∝ p(xi) exp
{
−N−1

0 ∥hi∥2|xi − zi|2
}

∝ p(xi) CN (zi;xi, ζ
2
i ), (22)

where ζ2i = N0/∥hi∥2. Here, CN (xi; zi, ζ
2
i ) can be inter-

preted as the likelihood function p(zi|xi; ζ
2
i ). In other words,

Algorithm 1: conv-VB algorithm with known noise
variance [13]

1 Input: y, H, N0, and prior distributions
{
p(xi)

}
;

2 Output: x̂;
3 Initialize x̂1 = 0;
4 for t = 1, 2, . . . do
5 for i = 1, 2, . . . ,K do
6 Compute gi(xi) as in (17);
7 Normalize the distribution qi(xi) as in (19);
8 Compute x̂t

i as in (20) with respect to qi(xi);
9 end

10 end
11 MAP estimate: x̂i ← arg maxa∈S qi(a).

the mean-field VB approximation decouples the linear MIMO
system into K parallel AWGN channels zi = xi+CN

(
0, ζ2i

)
.

Remark 1: The expression for zi in (21) can be expressed
as zi = ⟨xi⟩ +

(
hH
i /∥hi∥2

)(
y − H⟨x⟩

)
. Interestingly, this

expression presents a linear estimator of xi, which is similar
to the first step in the AMP method and in the OAMP scheme
with MF, albeit with the subtle change involving use of the
MF hH

i /∥hi∥2. The variational distribution qi(xi) and the
corresponding variational mean ⟨xi⟩ and variance σ2

xi
can

be obtained in the same manner as p(xi|zi; ζ2i ) and the cor-
responding posterior mean F(xi, ζ

2
i ) and variance G(xi, ζ

2
i )

presented in Appendix A. Note that ζ2i is now used in place
of σ2

t in the AMP-based algorithms. Since now the argument
inside the exponential function of qi(xi) is always negative,
the overflow issue with qi(xi) is averted.

B. Comparison of Conventional VB Inference with SIC

The variational distribution qi(xi) in the form of (22) is the
exact posterior distribution of the following linear model:

y = hixi +

K∑
j ̸=i

hj⟨xj⟩+ n, (23)

where
∑K

j ̸=i hj⟨xj⟩ is the realized inter-user interference and
n ∼ CN (0, N0IM ). Comparing with the system model (1), the
variational distribution qi(xi) corresponds to the true posterior
distribution p(xi|y) if the estimate ⟨xj⟩ is the same as the true
signal xj , ∀j ̸= i. In this case, the mean-field VB estimation
of xi is Bayes optimal. However, the system model (1) can
also be written as

y = hixi +

K∑
j ̸=i

hj⟨xj⟩+ ni, (24)

where ni =
∑K

j ̸=i hj

(
xj − ⟨xj⟩

)
+ n is the resid-

ual interference-plus-noise. With respect to the variational
distribution q−i(x−i), ni has covariance matrix Ci =
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∑K
j ̸=i σ

2
xj
hjh

H
j + N0IM . Since Ci ⪰ N0IM , the varia-

tional distribution qi(xi) in (22) may not represent a good
approximation of the posterior distribution p(xi|y), especially
when the residual inter-user interference is not negligible. This
observation explains the poor performance of conv-VB with
respect to the AMP-based algorithms. We note that this issue
was previously reported in [19] for the sparse signal recovery
problem by comparing the difference between the fixed points
of the AMP and the mean-field VB schemes.

We now compare conv-VB with SIC-based MIMO detec-
tion [5]. With a slight abuse of notation, we use ⟨xi⟩ to denote
the current soft estimate of xi in SIC. The key idea of SIC
is to first approximate the residual interference-plus-noise ni

as Gaussian while fixing the estimate ⟨xj⟩, ∀j ̸= i. Then,
the likelihood function p

(
y|xi; ⟨x−i⟩

)
is approximated as

CN
(
y;hixi +

∑K
j ̸=i hj⟨xj⟩,Ci

)
, enabling a tractable deriva-

tion of the posterior distribution p
(
xi|y; ⟨x−i⟩

)
via Bayes’

theorem.2 To this end, we examine two approaches to combine
the output signal y, cancel the interference

∑K
j ̸=i hj⟨xj⟩, and

generate the soft estimate ⟨xi⟩.
• SIC with MF (MF-SIC algorithm): By applying the

MF hH
i /∥hi∥2 as in (21) to (24), one attains a lin-

ear estimate zi of xi with interference cancellation as
zi ≈ xi + CN

(
0,hH

i Cihi/∥hi∥4
)
. The soft estimate

⟨xi⟩ can then be obtained as the posterior mean of
p
(
xi|zi;hH

i Cihi/∥hi∥4
)
.

• SIC with LMMSE filter (LMMSE-SIC algorithm): We
note that

p
(
y|xi; ⟨x−i⟩

)
≈ CN

(
y;hixi +

K∑
j ̸=i

hj⟨xj⟩,Ci

)

= CN
(
xi;

hH
i C−1

i

(
y −

∑K
j ̸=i hj⟨xj⟩

)
hH
i C−1

i hi

,
1

hH
i C−1

i hi

)
= CN

(
zi;xi,

1

hH
i C−1

i hi

)
, (25)

where

zi =
hH
i C−1

i

(
y −

∑K
j ̸=i hj⟨xj⟩

)
hH
i C−1

i hi

. (26)

Thus, we have zi ≈ xi + CN
(
0, 1/(hH

i C−1
i hi)

)
. The

soft estimate ⟨xi⟩ can then be obtained as the mean
of the posterior distribution p

(
xi|zi; 1/(hH

i C−1
i hi)

)
. We

observe that zi in the form of (26) is the LMMSE
estimate of xi after canceling the inter-user interference
and whitening with the colored residual interference-plus-
noise covariance matrix Ci.

MF-SIC and LMMSE-SIC proceed with the iterative update
over {xi} until convergence or a certain number of iterations
is reached. Except for the removal of the divergence terms,

2It can be proved that ni is Gaussian for sufficiently large K using
Lindeberg’s condition for the central limit theorem. Specifically, the condition
requires the independence between xj−⟨xj⟩, ∀j ̸= i and the finite posterior
variances {σ2

xj
} [20]. In addition, the covariance matrix Ci of ni for an i.i.d.

channel H and sufficiently large K tends to a scaled identity matrix, making
ni i.i.d. as well.

the implementation of MF-SIC and LMMSE-SIC is similar to
that of the AMP and OAMP/VAMP algorithms, respectively.
However, while SIC methods yield good estimation perfor-
mance as shown in several simulation scenarios in Section VII,
there are two major shortcomings in the algorithm. First,
the K (M ×M)-dimensional residual interference-plus-noise
covariance matrices {Ci} need to be computed (and inverted
in LMMSE-SIC) at each iteration, which leads to prohibitive
complexity for large systems. Second, the SIC-based MIMO
detection [5] may not be provably convergent. To address the
poor performance of conv-VB with known noise variance and
the shortcomings of the SIC algorithms, we develop two novel
VB schemes that jointly estimate the symbol vector and the
postulated noise variance or covariance matrix.

C. Proposed MF-VB for MIMO Detection

In practice, the noise variance N0 is not known a priori and
needs to be estimated as well. Moreover, the conventional VB
method with known noise variance does not take into account
the residual inter-user interference. Here, we consider the
residual interference-plus-noise as a random variable Npost

0 ,
which is postulated by the estimation in the VB framework.
For ease of computation, we use γ = 1/Npost

0 to denote
the precision of the estimation. We assume a conjugate prior
Gamma distribution Gamma(a0, b0) for γ, where a0 and
b0 are the shape and rate parameters of the distribution,
respectively. The PDF of γ is thus given by

p(γ) =
bγ0

Γ(a0)
γa0−1e−b0γ , (27)

where Γ(a0) is the Gamma function. Treating the precision γ
as a random variable, the joint distribution p(y,x, γ;H) can
be factorized as

p(y,x, γ;H) = p(y|x, γ;H)p(x)p(γ), (28)

where p(y|x, γ;H) = CN (y;Hx, γ−1IM ). Given the ob-
servation y, we aim at obtaining the mean-field variational
distribution q(x, γ) such that

p(x, γ|y;H) ≈ q(x, γ) =

K∏
i=1

qi(xi)q(γ). (29)

The optimization of q(x, γ) is executed by iteratively updating
{xi} and γ as follows.

1) Updating xi. The variational distribution qi(xi) is ob-
tained by expanding the conditional in (28) and taking the
expectation with respect to all latent variables except xi using
the variational distribution

∏K
j ̸=i qj(xj)q(γ):

qi(xi) ∝ exp
{〈

ln p(y|x, γ;H) + ln p(x)
〉}

∝ exp
{〈

ln p(x)− γ∥y −Hx∥2
〉}

∝ p(xi) exp
{
− ⟨γ⟩∥hi∥2|xi − zi|2

}
∝ p(xi) CN

(
zi;xi,

1

⟨γ⟩∥hi∥2

)
, (30)

where zi is a linear estimate of xi as defined in (21). The varia-
tional distribution qi(xi) can be easily realized by normalizing
p(xi) CN

(
zi;xi, 1/

(
⟨γ⟩∥hi∥2

))
. The variational mean and
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q(W) ∝ exp
{
ln |W| −

〈
(y −Hx)HW(y −Hx)

〉
+ (n−M) ln |W| − Tr{W−1

0 W}
}

∝ exp
{
(n−M + 1) ln |W| − Tr

{(
W−1

0 +
(
y −H⟨x⟩

)(
y −H⟨x⟩

)H
+HΣxH

H
)
W
}}

. (39)

⟨W⟩ = (n+ 1)
(
W−1

0 +
(
y −H⟨x⟩

)(
y −H⟨x⟩

)H
+HΣxH

H
)−1

. (40)

variance are then computed as ⟨xi⟩ = F
(
zi, 1/

(
⟨γ⟩∥hi∥2

))
and σ2

xi
= G

(
zi, 1/

(
⟨γ⟩∥hi∥2

))
, respectively.

2) Updating γ. The variational distribution q(γ) is obtained
by taking the expectation of the conditional in (28) with
respect to q(x):

q(γ) ∝ exp
{〈

ln p(y|x, γ;H) + ln p(γ)
〉}

∝ exp
{
M ln γ−γ

〈
∥y −Hx∥2

〉
+(a0 − 1) ln γ−b0γ

}
∝ exp

{
(a0 +M − 1) ln γ

− γ
(
b0 +

∥∥y −H⟨x⟩
∥∥2 +Tr{HΣxH

H}
)}

. (31)

Note that the last step is obtained as a result of Corollary 1.
The variational distribution q(γ) is thus Gamma with mean

⟨γ⟩ = a0 +M

b0 +
∥∥y −H⟨x⟩

∥∥2 +Tr{HΣxHH}
. (32)

By iteratively optimizing
{
qi(xi)

}
and q(γ), we obtain the

CAVI algorithm for estimating x and the precision γ. We refer
to this scheme as the MF-VB algorithm due to the use of the
MF hH

i /∥hi∥2 to obtain the linear estimate zi in (21).
Remark 2: If the improper prior Gamma(0, 0) is used,

1/⟨γ⟩ = (1/M)
(∥∥y −H⟨x⟩

∥∥2 + Tr{HΣxH
H}
)

is now the
point estimate of the deterministic unknown Npost

0 . Similar
to the AMP-based algorithms, the term

∥∥y−H⟨x⟩
∥∥2 reflects

the empirical estimate of the true noise variance N0, whereas
the term Tr{HΣxH

H} reflects the empirical error variance
induced by the MMSE denoiser F

(
zi, 1/

(
⟨γ⟩∥hi∥2

))
. This

result, corresponding to the M-step in variational Bayesian
expectation-maximization [18], coincides with the estimated
noise variance proposed in [19]. However, unlike [19], we
treat the reciprocal of the postulated noise variance as a
random variable under the VB framework.

Remark 3: If N0 is known, a weakly informative Gamma
prior, e.g., Gamma(1, N0) that results in E[γ] = 1/N0, can
be used instead of Gamma(0, 0). Interestingly, we observe
through numerous simulations that the MF-VB approach based
on the improper prior Gamma(0, 0) yields marginally more
accurate estimation of x than the one based on a weakly infor-
mative prior. Thus, we use the improper prior Gamma(0, 0)
in the numerical simulation for MF-VB.

D. Proposed LMMSE-VB for MIMO Detection

We now develop a VB method to estimate the input signal x
using the postulated noise covariance matrix Cpost instead of
using the postulated noise variance Npost

0 as in Section V-C.
For ease of computation, we use W = (Cpost)−1 to denote
the precision matrix and assume a conjugate prior complex
Wishart distribution CW(W0, n) for W, where W0 ⪰ 0 is

the scale matrix and n ≥ M is the number of degrees of
freedom. The PDF of W ∼ CW(W0, n) satisfies

p(W) ∝ |W|n−Mexp
(
− Tr{W−1

0 W}
)
. (33)

The joint distribution p(y,x,W;H) can be factorized as

p(y,x,W;H) = p(y|x,W;H)p(x)p(W), (34)

where p(y|x,W;H) = CN (y;Hx,W−1). Given the ob-
servation y, we aim at obtaining the mean-field variational
distribution q(x,W) such that

p(x,W|y;H) ≈ q(x,W) =

K∏
i=1

qi(xi)q(W). (35)

The optimization of q(x,W) is executed by iteratively updat-
ing {xi} and W as follows.

1) Updating xi. The variational distribution qi(xi) is ob-
tained by expanding the conditional in (34) and taking the
expectation with respect to all latent variables except xi using
the variational distribution

∏K
j ̸=i qj(xj)q(W):

qi(xi) ∝ exp
{〈

ln p(y|x,W;H) + ln p(x)
〉}

∝ exp
{〈

ln p(x)− (y −Hx)HW(y −Hx)
〉}

∝ p(xi) exp
{
− hH

i ⟨W⟩hi|xi − zi|2
}

∝ p(xi) CN
(
zi;xi,

1

hH
i ⟨W⟩hi

)
, (36)

where zi is a linear estimate of xi that is now defined as

zi =
hH
i ⟨W⟩

hH
i ⟨W⟩hi

(
y −

K∑
j ̸=i

hj⟨xj⟩
)

= ⟨xi⟩+
hH
i ⟨W⟩

hH
i ⟨W⟩hi

(
y −H⟨x⟩

)
. (37)

The variational distribution qi(xi) can easily be realized
by normalizing p(xi) CN

(
zi;xi, 1/(h

H
i ⟨W⟩hi)

)
. The vari-

ational mean and variance are then computed as ⟨xi⟩ =
F
(
zi, 1/(h

H
i ⟨W⟩hi)

)
and σ2

xi
= G

(
zi, 1/(h

H
i ⟨W⟩hi)

)
, re-

spectively.
2) Updating W. The variational distribution q(W) is ob-

tained by taking the expectation of the conditional in (34) with
respect to q(x):

q(W) ∝ exp
{〈

ln p(y|x,W;H) + ln p(W)
〉}

. (38)

Note that (38) can be expanded as in (39) at the top of the page
by applying Corollary 1. The variational distribution q(W) is
thus complex Wishart with n+1 degrees of freedom and mean
⟨W⟩ given in (40) at the top of the page.

By iteratively optimizing
{
qi(xi)

}
and q(W), we obtain the

CAVI algorithm for estimating x and the precision matrix W.
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Algorithm 2: MF-VB/LMMSE-VB algorithm with
postulated noise variance/covariance matrix

1 Input: y, H, and prior distributions
{
p(xi)

}
;

2 Output: x̂;
3 Initialize x̂1

i = 0 and σ2
xi,1 = Varp(xi)[xi], ∀i, and

r = y −Hx̂1;
4 for t = 1, 2, . . . do
5 Update Σx = diag(σ2

x1,t, . . . , σ
2
xK ,t);

6 γt ←M/
(
∥r∥2 +Tr{HΣxH

H}
)

for MF-VB or
Wt ←

(
(∥r∥2/M)IM +HΣxH

H
)−1 for

LMMSE-VB;
7 for i = 1, 2, . . . ,K do
8 For MF-VB, compute

zti ← x̂t
i + hH

i r/∥hi∥2

x̂t+1
i ← F

(
zti , 1/(γt∥hi∥2)

)
σ2
xi,t+1 ← G

(
zti , 1/(γt∥hi∥2)

)
or for LMMSE-VB, compute

zti ← x̂t
i + hH

i Wtr/(h
H
i Wthi)

x̂t+1
i ← F

(
zti , 1/(h

H
i Wthi)

)
σ2
xi,t+1 ← G

(
zti , 1/(h

H
i Wthi)

)
9 Update residual: r← r+ hi(x̂

t
i − x̂t+1

i )
10 end
11 end
12 MAP estimate:

x̂i ← arg maxa∈S paCN
(
zti ; a, 1/(γt∥hi∥2)

)
for MF-VB

or arg maxa∈S paCN
(
zti ; a, 1/(h

H
i Wthi)

)
for

LMMSE-VB.

We refer to this scheme as the LMMSE-VB algorithm since zi
resembles an LMMSE estimate of xi due to the cancellation of
the inter-user interference and the whitening of the postulated
noise covariance matrix Cpost.

Remark 4: If an improper prior CW(0,0) is used, the
variational mean ⟨W⟩ in (40) cannot be computed due to
the rank deficiency of

(
y−H⟨x⟩

)(
y−H⟨x⟩

)H
+HΣxH

H .
In fact, it may not be possible to estimate the covariance
matrix Cpost = ⟨W⟩−1 with only one degree of freedom. To
circumvent this issue, we propose to use the estimator

⟨W⟩ ≈
(∥∥y −H⟨x⟩

∥∥2
M

IM +HΣxH
H

)−1

(41)

for the precision matrix W. Similar to the AMP-based algo-
rithms and MF-VB, the term

(∥∥y − H⟨x⟩
∥∥2/M)IM reflects

the empirical estimate of the true noise variance N0 (and
also guarantees the existence of the inverse), whereas the
term HΣxH

H reflects the empirical error covariance ma-
trix induced by the MMSE denoiser F

(
zi, 1/

(
hH
i ⟨W⟩hi

))
.

Although the convergence of LMMSE-VB using ⟨W⟩ in (41)
is not analytically proved, all the simulations presented in
Section VII indicate a robust and fast convergence as well
as a remarkable performance.

MF-VB and LMMSE-VB are summarized side by side in
Algorithm 2. Here, we use x̂t

i to replace the variational mean
⟨xi⟩ at iteration t and each iteration consists of one round of
updating {xi} and γ (or W). To reduce the complexity of
both algorithms, we also include the residual term r, which

is initialized as y −Hx̂1. After re-estimating xi, i.e., x̂t
i into

x̂t+1
i , the residual r is updated as in step 9 to reflect the update

of x̂t+1
i . This step allows the matrix multiplication Hx̂t to be

bypassed in the linear estimator to obtain zti+1.
Remark 5: MF-VB and LMMSE-VB are analogous to MF-

SIC and LMMSE-SIC, respectively, except for a key difference.
The reciprocal of the noise variance (or covariance matrix) in
the VB algorithms is estimated only once per iteration. This
implementation significantly reduces the complexity, especially
for LMMSE-VB, compared with their SIC counterparts. In
addition, the convergence of MF-VB to at least a local optimal
solution can be analytically proved due to the coordinate
ascent approach of the algorithm.

Remark 6: MF-VB and LMMSE-VB are similar to AMP
and OAMP/VAMP implemented with MF and LMMSE filters,
respectively, in the linear estimation step. However, the VB al-
gorithms do not compute nor remove the divergence term as do
their AMP-based counterparts. Another difference between the
two frameworks lies in the updating step. The VB algorithms
use successive updates (Gauss-Seidel method), in which each
zi is computed based on the latest x̂ followed by the update of
x̂i. On the other hand, the AMP-based schemes allow parallel
updates (Jacobi method) of {zi} based on x̂ from the previous
iteration followed by the update of {x̂i}. Interestingly, by using
the residual update in step 9 of Algorithm 2, the complexity
of each iteration of the VB methods becomes comparable to
that of the AMP-based algorithms.

E. Computational Complexity Analysis

This section presents a comparative analysis on the compu-
tational complexity of LMMSE, AMP-based, SIC-based, and
VB-based algorithms. It is assumed that M ≥ K, as in the
case of uplink MIMO. Except for the LMMSE detector, which
has the complexity of O

(
MK2 + |S|K

)
, the complexity of

other algorithms is evaluated on a per-iteration basis. Their
Big-O complexity analyses are summarized in Table I and
elaborated in the following.

The AMP algorithm has the complexity of O
(
MK

)
in

the linear estimation step and O
(
|S|K

)
in the nonlinear

denoiser for all K users. Due to the matrix inversion in
the LMMSE filter, the OAMP/VAMP algorithm increases its
total complexity to O

(
MK2+ |S|K

)
. The MF-SIC algorithm

requires the computation of the residual interference-plus-
noise covariance matrix Ci, which induces the complexity of
O
(
M2
)

with proper implementation. Thus, the complexity
of MF-SIC for all K users is O

(
M2K + |S|K

)
. On the

other hand, the LMMSE-SIC algorithm demands the inversion
of Ci, which raises the complexity in the LMMSE estima-
tion step to O

(
M3
)

per user and the total complexity to
O
(
M3K+|S|K

)
. In the conv-VB algorithm, the computation

of the variational distribution qi(xi) using gi(xi) in (18)
or via the computation of zi in (21) has the complexity
of O

(
M2 + |S

)
. However, by defining the residual term

r = y − Hx̂ and properly updating r, the complexity can
be reduced to O

(
M + |S|

)
per user, resulting in the total

complexity of O
(
MK + |S|K

)
for the conv-VB algorithm.

Similarly, the MF-VB algorithm also has the complexity of
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TABLE I
COMPUTATIONAL COMPLEXITY OF MIMO DETECTION METHODS.

Method Complexity

LMMSE O
(
MK2 + |S|K

)
AMP O

(
MK + |S|K

)
OAMP/VAMP O

(
MK2 + |S|K

)
MF-SIC O

(
M2K + |S|K

)
LMMSE-SIC O

(
M3K + |S|K

)
conv-VB O

(
MK + |S|K

)
MF-VB O

(
MK + |S|K

)
LMMSE-VB O

(
M3 + |S|K

)

O
(
MK+ |S|K

)
with the use and update of r in step 9 of its

implementation. Note that the update of γt in step 6 requires
the computation of Tr{HΣxH

H} =
∑K

i=1 ∥hi∥2σ2
xi,t

, which
itself has the complexity of O

(
MK

)
. In the implementation of

the LMMSE-VB algorithm, the computation of Wt in step 6
induces the complexity of O

(
M3
)
, where as the computation

in step 9 has the complexity of O
(
M2 + |S|

)
per user.

Thus, the total complexity of the LMMSE-VB algorithm is
O
(
M3 + |S|K

)
.

VI. VB INFERENCE FOR MIMO DETECTION WITH
IMPERFECT CSIR

In this section, we develop a new VB method for MIMO
detection in the presence of imperfect CSIR. We assume that
there is a mismatch between the estimated channel, denoted
by Ĥ, and the true channel H.

A. Conventional MIMO Detection with Imperfect CSIR

We first examine a conventional approach in which the
BS estimates the uplink channel during the pilot transmission
phase and uses the estimated channel for data detection. Let
xp,i ∈ CTp be the pilot sequence transmitted by user i. The
received signal during the pilot transmission phase over Tp

time slots can be modeled as

Yp = HXp +Np, (42)

where Xp = [xp,1, . . . ,xp,K ]T ∈ CK×Tp is the pilot ma-
trix and Np is additive Gaussian noise comprised of i.i.d.
CN (0, N0) random variables. Here, we assume that the pilot
sequences from the K users are orthogonal to each other, i.e.,
XpX

H
p = PpTpIK , where Pp is the transmit power during the

pilot transmission phase. We first correlate the received signal
with the associated pilot signal xp,i from user i to obtain

yp,i =
1√
PpTp

Ypx
∗
p,i

=
1√
PpTp

K∑
j=1

hjx
T
p,jx

∗
p,i +

1√
PpTp

Npx
∗
p,i

=
√

PpTphi + np,i, (43)

where np,i =
(
1/
√
PpTp

)
Npx

∗
p,i ∼ CN (0, N0IM ). The

optimal MMSE estimate ĥi can be obtained as

ĥi = E[hiy
H
p,i]
(
E[yp,iy

H
p,i]
)−1

yp,i

=
√

PpTp(PpTpIM +N0R
−1
i )−1yp,i

= (PpTpIM +N0R
−1
i )−1Ypx

∗
p,i. (44)

The estimation errors ei = hi − ĥi,∀i are independent and
each is distributed as ei ∼ CN (0,Ki), with

Ki = (PpTpN
−1
0 IM +R−1

i )−1. (45)

The channel estimation mismatch can thus be modeled as

H = Ĥ+E, (46)

where the channel estimation error E = [e1, . . . , eK ] is
independent of the estimated channel Ĥ. Hence, the system
model (1) can be rewritten as

y = Ĥx+Ex+ n. (47)

Conditioned on x, the effective noise ñ = Ex+n is Gaussian
with zero mean and covariance matrix

Cñ|x =

K∑
i=1

|xi|2Ki +N0IM . (48)

Treating p(y|x; Ĥ) = CN (y; Ĥx,Cñ|x) as the likelihood
function, one can apply the MAP (or ML) detector as men-
tioned in Section III to obtain an optimal estimate of x.

Alternatively, an LMMSE detector can be used to estimate
x with reduced complexity compared to the MAP detector.
The LMMSE detector in (4) can be readily applied with a
small adjustment by replacing the noise covariance matrix
N0IM with the approximate covariance matrix of the effective
noise Cñ = Ex

[
Cñ|x

]
=
∑K

i=1 E
[
|xi|2

]
Ki+N0IM . We note

that conventional MIMO detection methods simply treat the
channel estimation error as noise. Hence, we develop a novel
VB scheme to jointly estimate the channel, the symbol vector,
and the postulated noise variance.

B. Proposed MF-VB-M for MIMO Detection with Imperfect
CSIR

Treating the channel H and the precision γ = 1/Npost
0

as random variables, the joint distribution p(y,x,H, γ; Ĥ,K)
can be factored as

p(y,x,H, γ; Ĥ,K) = p(y|x,H, γ)p(H; Ĥ,K)p(x)p(γ),
(49)

where p(y|x,H, γ) = CN (y;Hx, γ−1IM ) and p(H; Ĥ,K)
=
∏K

i=1 CN (hi; ĥi,Ki). Given the observation y and the
estimated channel Ĥ, we aim at obtaining the mean-field
variational distribution q(x,H, γ) such that

p(x,H, γ|y; Ĥ,K) ≈ q(x,H, γ)

=

K∏
i=1

qi(xi)

K∏
i=1

qi(hi)q(γ). (50)

The optimization of q(x,H, γ) is executed by iteratively
updating {hi}, {xi}, and γ as follows.
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qi(xi) ∝ p(xi)exp

{
− ⟨γ⟩

(∥∥⟨hi⟩
∥∥2 +Tr{Σi}

)
|xi|2 + 2ℜ

{
⟨hH

i ⟩
(
y −

K∑
j ̸=i

⟨hj⟩⟨xj⟩
)
x∗
i

}}
∝ p(xi)exp

{
− ⟨γ⟩

(∥∥⟨hi⟩
∥∥2|xi − zi|2 +Tr{Σi}|xi|2

)}
∝ p(xi)CN

(
xi; zi,

1

⟨γ⟩
∥∥⟨hi⟩

∥∥2
)
CN
(
xi; 0,

1

⟨γ⟩Tr{Σi}

)

∝ p(xi)CN
(
xi;

zi
∥∥⟨hi⟩

∥∥2∥∥⟨hi⟩
∥∥2 +Tr{Σi}

,
1

⟨γ⟩
(∥∥⟨hi⟩

∥∥2 +Tr{Σi}
)). (55)

1) Updating hi. The variational distribution qi(hi) is ob-
tained by expanding the conditional in (49) and taking the
expectation with respect to all latent variables except hi using
the variational distribution q(x)

∏K
j ̸=i qj(hj)q(γ):

qi(hi)

∝ exp
{〈

ln p(y|x,H, γ) + ln p(hi; ĥi,Ki)
〉}

∝ exp
{
−
〈
γ∥y −Hx∥2

〉
− (hi − ĥi)

HK−1
i (hi − ĥi)

}
∝ exp

{
− hH

i

[
⟨γ⟩
〈
|xi|2

〉
IM +K−1

i

]
hi

+2ℜ
{
hH
i

[
⟨γ⟩
(
y−

K∑
j ̸=i

⟨hj⟩⟨xj⟩
)
⟨x∗

i ⟩+K−1
i ĥi

]}}
. (51)

The variational distribution qi(hi) is thus Gaussian with mean
and covariance matrix

⟨hi⟩ = Σi

(
⟨γ⟩
(
y −

K∑
j ̸=i

⟨hj⟩⟨xj⟩
)
⟨x∗

i ⟩+K−1
i ĥi

)
, (52)

Σi =
[
⟨γ⟩
〈
|xi|2

〉
IM +K−1

i

]−1
, (53)

respectively.
2) Updating xi. The variational distribution qi(xi) is ob-

tained by expanding the conditional in (49) and taking the
expectation with respect to all latent variables except xi using
the variational distribution

∏K
j ̸=i qj(xj)q(H)q(γ):

qi(xi) ∝ exp
{〈

ln p(y|x,H, γ) + ln p(x)
〉}

∝ p(xi)exp
{
−
〈
γ∥y −Hx∥2

〉}
. (54)

Note that (54) can be expanded as in (55) at the top of the next
page, where zi is a linear estimate of xi that is now defined
as

zi =
⟨hH

i ⟩∥∥⟨hi⟩
∥∥2
(
y −

K∑
j ̸=i

⟨hj⟩⟨xj⟩

)

= ⟨xi⟩+
⟨hH

i ⟩∥∥⟨hi⟩
∥∥2 (y − ⟨H⟩⟨x⟩

)
, (56)

with
〈
∥hi∥2

〉
=
∥∥⟨hi⟩

∥∥2 +Tr{Σi}. Now, we define

z̃i =
zi
∥∥⟨hi⟩

∥∥2∥∥⟨hi⟩
∥∥2 +Tr{Σi}

, (57)

ζ̃2i =
1

⟨γ⟩
(∥∥⟨hi⟩

∥∥2 +Tr{Σi}
) , (58)

and obtain the variational distribution qi(xi) as3

qi(xi) ∝ p(xi)CN (xi; z̃i, ζ̃
2
i ), (59)

which can be easily normalized. The variational mean ⟨xi⟩
and variance σ2

xi
are then computed accordingly.

3) Updating γ. The variational distribution q(γ) is obtained
by taking the expectation of the conditional in (49) with
respect to q(x)q(H):

q(γ) ∝ exp
{〈

ln p(y|x,H, γ) + ln p(γ)
〉}

∝ exp
{
M ln γ − γ

〈
∥y −Hx∥2

〉
+(a0 − 1) ln γ − b0γ

}
. (60)

The variational distribution q(γ) is thus Gamma with mean

⟨γ⟩ = a0 +M

b0 +
〈
∥y −Hx∥2

〉 , (61)

to which we apply Theorem 1 to obtain〈
∥y −Hx∥2

〉
=
∥∥y − ⟨H⟩⟨x⟩

∥∥2 +Tr
{
⟨H⟩Σx⟨H⟩H

}
+

K∑
i=1

〈
|xi|2

〉
Tr{Σi}. (62)

Similar to the AMP-based algorithms and MF-VB/LMMSE-
VB, the term

∥∥y − ⟨H⟩⟨x⟩
∥∥2 reflects the empirical es-

timate of the true noise variance N0, whereas the term
Tr
{
⟨H⟩Σx⟨H⟩H

}
reflects the empirical error covariance ma-

trix induced by the MMSE denoiser F
(
z̃i, ζ̃

2
i

)
. In addition,

the term
∑K

i=1

〈
|xi|2

〉
Tr{Σi} reflects the empirical error

covariance matrix induced by the channel estimator.
By iteratively optimizing

{
qi(hi)

}
,
{
qi(xi)

}
, and q(γ),

we obtain the CAVI algorithm for estimating H, x, and
the precision γ. We refer to this scheme as the MF-VB-
M algorithm due to the use of the MF ⟨hi⟩H/

∥∥⟨hi⟩
∥∥2 to

obtain the linear estimate zi in (56) with channel estimation
mismatch. MF-VB-M is summarized in Algorithm 3. Here,
we use x̂t

i and ȟt
i to replace the variational means ⟨xi⟩ and

⟨hi⟩, respectively, at iteration t and each iteration consists of
one round of updating {hi}, {xi}, and γ.

3To obtain (59), we use the following property of the Gaussian distribution:

CN (x; a,A)CN (x; b, B) = CN
(
x;

a/A+ b/B

1/A+ 1/B
,

1

1/A+ 1/B

)
×CN (0; a− b, A+B)

∝ CN
(
x;

a/A+ b/B

1/A+ 1/B
,

1

1/A+ 1/B

)
.
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Algorithm 3: MF-VB-M algorithm with postulated
noise variance and imperfect CSIR

1 Input: y, Ĥ, {Ki}, and prior distributions
{
p(xi)

}
;

2 Output: x̂ and Ȟ;
3 Initialize x̂1

i = 0, σ2
xi,1 = Varp(xi)[xi], and Σi = Ki, ∀i,

and Ȟ1 = Ĥ;
4 for t = 1, 2, . . . do
5 for i = 1, 2, . . . ,K do
6 Compute Σi as in (53) and ȟt

i as in (52);
7 end
8 for i = 1, 2, . . . ,K do
9 Compute zti , z̃ti , and ζ̃2i,t as in (56), (57), and (58),

respectively;
10 Compute and normalize qi(xi) as in (59);
11 Compute x̂t

i and σ2
xi,t with respect to qi(xi);

12 end
13 Compute γt using (61)–(62);
14 end
15 MAP estimate: x̂← arg maxa∈S qi(a).

Remark 7: Algorithm 3 requires K matrix inversions
per iteration to compute the variational distribution q(H).
However, if the channel matrix H is i.i.d. Gaussian, i.e.,
Ri = (1/M)IM , ∀i, we obtain the statistics of the channel
vector hi during the pilot transmission phase as

ĥi =
1

PpTp +MN0
Ypx

∗
p,i, (63)

Ki =
1

PpTpN
−1
0 +M

IM . (64)

Algorithm 3 can then be executed without any matrix inver-
sion. More specifically, the variational distribution q(hi) is
Gaussian with mean and covariance matrix

⟨hi⟩ =
⟨γ⟩
(
y −

∑K
j ̸=i⟨hj⟩⟨xj⟩

)
⟨x∗

i ⟩+ (PpTpN
−1
0 +M)ĥi

⟨γ⟩
〈
|xi|2

〉
+ PpTpN

−1
0 +M

,

(65)

Σi =
1

⟨γ⟩
〈
|xi|2

〉
+ PpTpN

−1
0 +M

IM , (66)

respectively.
Remark 8: LMMSE-VB can also be developed for the joint

estimation of H, x, and the precision matrix W =
(
Cpost

)−1
.

This would call for a few minor adjustments to MF-VB-M to
accommodate the estimation of W in place of γ similar to
those necessary to obtain LMMSE-VB from MF-VB. However,
the computation of the variational distribution of hi, which
is Gaussian with covariance matrix Σi =

[〈
|xi|2

〉
⟨W⟩ +

K−1
i

]−1
, requires the inversion of an (M ×M)-dimensional

matrix, even for i.i.d. channels. Hence, the resulting algorithm
would be much more computationally intensive than LMMSE-
VB. In addition, we observe through numerical simulations
that such an algorithm provides negligible performance gains
with respect to MF-VB-M and we thus omit its derivations and
discussion.

VII. SIMULATION RESULTS

This section presents numerical results comparing the SER
performance of the AMP-based, SIC, and VB algorithms along

with the LMMSE detector. The number of iterations is capped
at 50 for each of these iterative algorithms. Unless otherwise
stated, the covariance matrices {Ri} are normalized such that
their diagonal elements are 1/M , which implies E

[
∥hi∥2

]
=

1, ∀i. The noise variance N0 is set according to the operating
signal-to-noise ratio (SNR), which is defined as

SNR =
E
[
∥Hx∥2

]
E
[
∥n∥2

] =

∑K
i=1 Tr{Ri}
MN0

=
K

MN0
. (67)

A. Perfect CSIR with i.i.d. Gaussian Channels

We first examine the case where the channel matrix H
consists of i.i.d. Gaussian coefficients (corresponding to i.i.d.
Rayleigh fading) and is perfectly known at the BS.

Fig. 1 illustrates the SER performance for a case with
M = K = 32 and QPSK signaling. At high SNR, MF-
VB outperforms AMP and MF-SIC, whereas LMMSE-VB
significantly outperforms OAMP/VAMP and LMMSE-SIC.
In this relatively small MIMO system, the algorithms using
the LMMSE filter in the linear estimation step significantly
outperform their counterparts based on the MF. This gain
comes at the expense of increased complexity, especially
for LMMSE-SIC. It is noted that conv-VB performs very
poorly, even worse than the LMMSE detector, at high SNR.
The proposed MF-VB and LMMSE-VB have addressed this
limitation.

Fig. 2 depicts the SER performance for a case with M =
K = 128 and QPSK signaling. In this relatively large MIMO
system, AMP, OAMP/VAMP, MF-SIC, MF-VB, and LMMSE-
VB obtain similar SER results. Thus, in this case there is no
benefit to use more computationally intensive schemes like
OAMP/VAMP and LMMSE-VB. Due to the computational
burden of LMMSE-SIC, we omit its simulation. However,
LMMSE-SIC is expected to achieve a similar performance
to the other algorithms (except conv-VB) since AMP and
OAMP/VAMP are optimal in the large-system limit. In ad-
dition, as the residual inter-user interference becomes i.i.d. for
large K and i.i.d. channels, MF-SIC and LMMSE-SIC are
thus equivalent. In Figs. 1 and 2, the curve corresponding to
AWGN channels is also plotted as a lower bound for i.i.d.
Rayleigh fading channels with β = 1 and M → ∞.

Fig. 3 plots the SER performance for a case with M =
K = 32 and 16-QAM signaling. Compared with the results in
Fig. 1, it is worth noting that a higher modulation scheme
requires more than a simple increase in SNR to approach
the SER performance as for AWGN channels. In this rel-
atively small MIMO system, AMP, MF-SIC, and MF-VB
saturate quite quickly and perform very poorly compared with
OAMP/VAMP, LMMSE-SIC, and LMMSE-VB. Fig. 3 also
indicates the superior performance of the proposed LMMSE-
VB over OAMP/VAMP and LMMSE-SIC, achieving gains of
up to 5 dB and 8 dB, respectively, at high SNR.

Fig. 4 displays the convergence behavior of the above
algorithms for a case with M = K = 64, QPSK signaling,
and an SNR of 12 dB. The convergence plots are obtained
by averaging over 500 channel realizations. It is observed
that the SIC algorithms converge faster than their AMP and
VB counterparts. Specifically, LMMSE-SIC converges within
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Fig. 1. SER performance of the LMMSE detector, AMP-based algorithms
(in dashed lines), SIC algorithms (in dashed-dotted lines), and VB algorithms
(in solid lines) assuming i.i.d. Rayleigh fading channels with M = K = 32
and QPSK signaling. LMMSE-VB achieves the lowest SER at high SNR.
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Fig. 2. SER performance of the LMMSE detector, AMP-based algorithms
(in dashed lines), SIC algorithms (in dashed-dotted lines), and VB algorithms
(in solid lines) assuming i.i.d. Rayleigh fading channels with M = K = 32
and QPSK signaling. All the algorithms achieve comparable SER, except for
the LMMSE detector and conv-VB.

5 iterations, whereas OAMP/VAMP requires 10 iterations.
However, the quick convergence of LMMSE-SIC comes at the
cost of much higher complexity per iteration. Interestingly,
MF-VB converges faster and to a lower SER than AMP.
Although its convergence is not analytically proved, LMMSE-
VB converges fairly quickly in all the considered simulation
scenarios, as indicated in Fig. 4.

B. Perfect CSIR with Correlated Channels

We now study the case where the channel matrix H consists
of correlated Gaussian coefficients (corresponding to corre-
lated Rayleigh fading) and is perfectly known at the BS.
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Fig. 3. SER performance of the LMMSE detector, AMP-based algorithms
(in dashed lines), SIC algorithms (in dashed-dotted lines), and VB algorithms
(in solid lines) assuming i.i.d. Rayleigh fading channels with M = K = 32
and 16-QAM signaling. Only the algorithms using the LMMSE filter in the
linear estimation step achieve acceptable SER, and LMMSE-VB shows the
lowest SER at high SNR.
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Fig. 4. Convergence of the AMP-based algorithms (in dashed lines), SIC
algorithms (in dashed-dotted lines), and VB algorithms (in solid lines) as-
suming i.i.d. Rayleigh fading channels with M = K = 64, QPSK signaling,
and SNR of 12 dB. All the algorithms exhibit very quick convergence (less
than 20 iterations).

We first consider the exponential spatial correlation
model [21] for each column of H, in which each covariance
matrix Ri is set to

[Ri]kℓ =

{
(1/M)αk−ℓ, if k ≥ ℓ
(1/M)(αℓ−k)∗, if k < ℓ,

(68)

where α is the (complex) correlation coefficient between
neighboring receive antennas. Fig. 5 presents the SER per-
formance with M = K = 64, QPSK signaling, and using the
exponential model with α = 0.5+j0.5. It is observed that only
the algorithms using the LMMSE filter in the linear estimation
step achieve acceptable SER at high SNR. AMP, MF-SIC,
VB, and MF-VB are even worse than the LMMSE detector as
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Fig. 5. SER performance of the LMMSE detector, AMP-based algorithms
(in dashed lines), SIC algorithms (in dashed-dotted lines), and VB algorithms
(in solid lines) assuming correlated Rayleigh fading channels based on the
exponential model, M = K = 64, and QPSK signaling. Only the algorithms
using the LMMSE filter in the linear estimation step achieve acceptable SER,
and LMMSE-VB tends to achieve the lowest SER at high SNR.

6 8 10 12 14 16 18 20

SNR in dB

10
-4

10
-3

10
-2

10
-1

10
0

S
E

R

LMMSE

AMP

OAMP/VAMP

MF-SIC

LMMSE-SIC

conv-VB

MF-VB

LMMSE-VB

Fig. 6. SER performance of the LMMSE detector, AMP-based algorithms (in
dashed lines), SIC algorithms (in dashed-dotted lines), and VB algorithms (in
solid lines) assuming correlated Rayleigh fading channels based on the one-
ring model, M = K = 64, and QPSK signaling. Only the algorithms using
the LMMSE filter in the linear estimation step achieve acceptable SER, and
the OAMP/VAMP algorithm outperforms LMMSE-VB.

they fail to account for the correlated MIMO channels in the
linear estimation step. At very high SNR, LMMSE-VB tends
to outperform OAMP/VAMP, and both achieve much lower
SER than LMMSE-SIC.

As a further example, we examine the SER performance
using the one-ring spatial correlation model [22]. This is
characterized by a ring of scatterers around the users and
no significant local scattering around the BS. In this context,
the multipath components arrive at the BS with a small
angular spread and the covariance matrices {Ri} tend to have

24 26 28 30 32 34 36 38 40

SNR in dB

10
-4

10
-3

10
-2

10
-1

10
0

S
E

R

LMMSE

AMP

OAMP/VAMP

MF-SIC

conv-VB

MF-VB

LMMSE-VB

Fig. 7. SER performance of the LMMSE detector, AMP-based algorithms (in
dashed lines), SIC algorithms (in dashed-dotted lines), and VB algorithms (in
solid lines) assuming the QuaDRiGa channel simulator with M = 128, K =
64, and QPSK signaling. LMMSE-VB outperforms all the other algorithms
by a large margin.

low rank as M grows large [23]. Fig. 6 presents the SER
performance for a case with M = K = 64, QPSK signaling,
and using the one-ring model with a 15◦ angular spread.
Similar to the results in Fig. 5, only OAMP/VAMP, LMMSE-
SIC, and LMMSE-VB achieve acceptable SER at high SNR.
However, OAMP/VAMP now outperforms LMMSE-VB by a
small margin (i.e., < 1 dB).

We next consider a realistic channel model used to mimic
urban cellular deployments. In particular, we assume 3D
MIMO channels generated by the 3GPP QuaDRiGa channel
simulator [24]. We consider a BS equipped with a rectangular
planar array with 64 dual-polarized antennas (i.e., M = 128)
installed at a height of 25 m. The BS is assumed to cover
a 120◦ cell sector of radius 500 m within which K = 64
users are uniformly distributed. We generate 200 channel re-
alizations by creating 200 independent realizations of the user
locations. Since the pathloss can vary dramatically between
different users and we assume no power control (E[|xi|2] =
1, ∀i), the operating SNRs can vary significantly from user to
user. For each channel realization, we vary the noise variance
N0 at the BS accordingly to achieve an average operating SNR
for all users, which is now defined as

SNR =
E
[
∥Hx∥2

]
E
[
∥n∥2

] =
Tr{HHH}

MN0
. (69)

Fig. 7 illustrates the SER performance using the QuaDRiGa
channel simulator described above, where LMMSE-SIC is
omitted due to its prohibitive complexity with M = 128. It
is observed that OAMP/VAMP performs only slightly better
than the LMMSE detector, and both are significantly worse
than LMMSE-VB. The large gap between OAMP/VAMP
and LMMSE-VB in this non-homogeneous SNR setting is
due to the difference in their methods of decoupling the
MIMO channel. OAMP/VAMP decouples the MIMO channel
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Fig. 8. SER performance of the LMMSE detector, AMP-based algorithms
(in dashed lines), SIC algorithms (in dashed-dotted lines), and VB algorithms
(in solid lines) assuming i.i.d. Rayleigh fading channels with imperfect CSIR,
M = K = 32, and QPSK signaling. MF-VB-M reduces the SER with respect
to MF-VB by nearly one order of magnitude at high SNR.

into K parallel Gaussian channels with the same SNR, i.e.,
zi = xi+CN (0, σ2

t ). On the contrary, LMMSE-VB decouples
it into K parallel channels with possibly different SNRs, i.e.,
zi = xi + CN

(
0, 1/(hH

i Wthi)
)
, enabling the consideration

of user-specific channel conditions.

C. Imperfect CSIR

Lastly, we examine the i.i.d. Rayleigh fading case with
imperfect CSIR and compare the SER performance of the
proposed MF-VB-M with that of MF-VB and of the other
algorithms using the LMMSE filter in the linear estimation
step. We consider M = K = 32, QPSK signaling, pilot
transmission time Tp = 32, and pilot transmit power Pp = 1.
The estimated channel Ĥ is obtained via the optimal MMSE
channel estimator in (44). In all the algorithms except MF-
VB-M, the estimated channel Ĥ is treated as the true channel
H. The resulting SER performance is illustrated in Fig. 8.
Compared with the results in Fig. 1, we see that LMMSE-
VB outperforms OAMP/VAMP and LMMSE-SIC by a wider
margin in this case with channel estimation mismatch. Further-
more, the SER of MF-VB is close to that of OAMP/VAMP
and LMMSE-SIC. The improved performance of MF-VB and
LMMSE-VB relative to OAMP/VAMP and LMMSE-SIC is
due to the fact that the postulated noise variance/covariance
matrix implicitly takes into account the channel estimation
error. The proposed MF-VB-M algorithm for MIMO detection
with imperfect CSIR is much better than MF-VB and performs
similarly to LMMSE-VB at high SNR. This performance
gain only requires a few additional simple computation steps
to derive the variational distribution of hi, as detailed in
Remark 7.

VIII. CONCLUSION

This paper presented a study of massive MIMO detec-
tion from a variational Bayesian perspective. For the case
of perfect CSIR, we developed the MF-VB and LMMSE-
VB algorithms that use the noise variance and covariance
matrix, respectively, postulated by the VB framework itself.
These algorithms address the limitation in the conventional
VB method with known noise variance and can approach and
outperform their AMP-based and SIC counterparts in numer-
ous channel settings. In addition, they involve closed-form
and computationally efficient updates and exhibit very quick
convergence. Finally, we proposed the MF-VB-M algorithm
for the case of imperfect CSIR. Numerical results confirm
the superior performance of the developed VB algorithms
over the AMP-based and SIC schemes under various channel
models. Future work may consider extensions to nonlinear,
time-varying, and/or wideband MIMO channels.

APPENDIX A
COMPUTATION OF p(xi|zi, σ2

t ), F(z
t
i , σ

2
t ), AND G(zti , σ

2
t )

To compute the posterior mean and variance used in AMP
and OAMP/VAMP, it is noted that the posterior distribution is
given by

p(xi|zti ;σ2
t ) =

1

Z
p(zti |xi;σ

2
t )p(xi)

=
1

Z
CN (zti ;xi, σ

2
t )p(xi), (70)

where Z is the normalization factor. In the context of MIMO
detection, the posterior distribution is discrete with probability
mass function given by

p(a|zti ;σ2
t ) =

1

Z
exp

(
− |zti − a|2

σ2
t

)
pa, (71)

with Z =
∑

b∈S exp
(
− |zt

i−b|2
σ2
t

)
pb. The corresponding poste-

rior mean F(zti , σ
2
t ) and variance G(zti , σ

2
t ) can be computed

accordingly. The final MAP estimate of xi can be obtained as

x̂i = arg max
xi∈S

p(xi|zti ;σ2
t )

= arg max
a∈S

(
ln pa −

|zti − a|2

σ2
t

)
. (72)
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