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Abstract—This paper is concerned with the maximization of
the weighted sum-rate (WSR) in the multicell MIMO multiple
access channel (MAC). We consider a multicell network operating
on the same frequency channel with multiple mobile stations
(MS) per cell. Assuming the interference coordination mode in the
multicell network, each base-station (BS) only decodes the signals
for the MSs within its cell, while the inter-cell transmissions are
treated as noise. Nonetheless, the uplink precoders are jointly op-
timized at MSs through the coordination among the cells in order
to maximize the network weighted sum-rate (WSR). Since this
WSR maximization problem is shown to be nonconvex, obtaining
its globally optimal solution is rather computationally complex.
Thus, our focus in this work is on low-complexity algorithms to
obtain at least locally optimal solutions. Specifically, we propose
two iterative algorithms: one is based on successive convex
approximation and the other is based on iterative minimization
of weighted mean squared error. Both solution approaches shall
then reveal the structure of the optimal uplink precoders. In
addition, we also show that the proposed algorithms can be
implemented in a distributed manner across the coordinated
cells. Simulation results show a significant improvement in the
network sum-rate by the proposed algorithms, compared to the
case with no interference coordination.

Index Terms—Multicell, interference coordination, coordi-
nated multipoint transmission/reception, multiple-input multiple-
output, multiple access channel, convex optimization, MMSE.

I. INTRODUCTION

IN the latest 3GPP LTE-Advanced Release, coordinated
multi-point transmission/reception (CoMP) has been con-

sidered as a technology to improve the system’s coverage,
throughput, and efficiency [1]. In the downlink direction,
CoMP coordinates the simultaneous information transmissions
from multiple base-stations (BS) to the mobile-stations (MS),
especially to the ones in the cell-edge region. In the uplink
direction, CoMP allows the system to take advantage of the
multiple receptions at the multiple cells to jointly decode the
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uplink signal from the MSs. Since CoMP actively utilizes the
inter-cell transmissions, instead of treating them as interfer-
ence, the system performance can be significantly improved
[1]. Note that the concept of CoMP is equivalent to that of
network MIMO, where the multiple BSs are fully coordinated
to form a large single antenna array with distributed antenna
elements [2]. Thus, existing precoding techniques in single-
cell MIMO transmissions can be straightforwardly adopted
to this network MIMO configuration. While extracting the
most performance from the multicell network, network MIMO
comes at the expense of high complexity in joint precod-
ing/decoding and ideal backhaul transmissions among the BSs
for data and control signaling exchange [3].

In a lesser level of coordination, namely interference co-
ordination, each BS needs to encode or decode only the sig-
nals to/from the MSs within its cell. This encoding/decoding
strategy relieves the need of data exchange in the backhaul
links among the coordinated BSs. The inter-cell transmissions,
now being considered as the source of inter-cell interference
(ICI), are still fully controlled through the coordination among
the cells. In this multicell system with interference coor-
dination, transmission/reception techniques for a single-cell
MIMO system are no longer applicable and need a rework.
In particular, in the downlink direction, the precoders from
different BSs have to be coordinately designed to control the
ICI. Compared to the multicell system with no interference
coordination, significant power reduction or rate enhancement
can be obtained by such a joint precoding design across the
coordinated BSs [4], [5]. Similarly, in the uplink direction, it
is expected that the system performance can be also improved
by exploiting interference coordination among transmitting
MSs. However, to the best of our knowledge, no work in
the literature has addressed this coordinated precoding de-
sign to realize its performance enhancement in the uplink
transmissions. In contrast to the downlink direction, where
the coordinated precoders are designed at the BSs, it may
be desirable for the uplink counterpart that each MS is able
to determine its precoder distributively with local information
only. In this case, the role of the BSs is to exchange useful
control signaling to the MSs so that each MS can optimize
its precoder on its own. On the other hand, the precoder at
each MS has to be devised in a coordinated manner, in order
to maximize the link performance to its connected BS while
minimizing its induced ICI to other BSs.

In this paper, we examine a coordinated multicell system
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in a general setting with multiple MSs per cell, where each
MS is equipped with multiple transmit antennas. At each cell,
the multiple MSs concurrently transmit information signals to
its connected BS, which indeed emulates a MIMO multiple-
access channel (MAC) system. Per the interference coordi-
nation mode, the BS then only decodes the signals for its
connected MSs by implementing the capacity-achieving de-
coding technique, namely successive interference cancelation
(SIC). The main interest of this paper is the study on how
to design the uplink precoders at the MSs with the objective
of maximizing the network weighted sum-rate (WSR). Since
this WSR maximization problem is shown to be nonconvex, it
is generally difficult and computationally complex to find its
globally optimal solution. Thus, the main focus of this work
is on proposing low-complexity algorithms to break down the
nonconvex WSR maximization into a sequence of simpler
convex problems.

A. Related Works

It is known that the resource allocation problem (power
allocation, precoder design, etc) for maximizing the WSR in
an interference network is a challenging task. Even if there is
only one MS per cell, where the multicell system is known as
an interference channel (IC), the WSR maximization problem
turns out to be nonconvex [6]. Several works in literature have
examined different numerical techniques to design the transmit
precoders to maximize the WSR. Specifically, the gradient
projection method was applied in [6] to search for a locally
optimal transmit strategy. The works in [7], [8] applied the
successive convex approximation technique to decompose the
original nonconvex problem into multiple convex problems,
which can be solved separately at the transmitters. In par-
ticular, each transmitter optimizes its precoder to maximize
its link data rate with an interference-penalty term on the
interference induced to other links [7], [8]. This approach,
being referred to as iterative linear approximation (ILA) [9],
can be traced back to earlier works in difference of convex
(DC) programming [10]–[12], where the nonconvex parts are
linearly approximated into the penalty terms. In [6]–[8], by
considering only one single MS per cell, the decomposed
problem can be readily solved in a closed-form solution at
its corresponding BS [8].

One other distributed approach to locally solve the noncon-
vex WSR maximization problem in an interference network
is the weighted mean squared error (WMMSE) algorithm.
The main concept of the WMMSE is the transformation of
the WSR maximization problem into an equivalent WMMSE
problem with some specially chosen weight matrices [13]. The
WMMSE problem is then solved by alternating optimizing
the weight matrices, the precoders, and the minimum mean
squared error (MSE) decoders. Initially proposed in [13]
for the single-cell MIMO broadcast downlink channel, the
WMMSE algorithm was considered in [14] to maximize
the IC’s WSR with one data stream per link. Recently,
the WMMSE approach has been extended to the multicell
downlink system with multiple MSs per cell in [9], where the
linear precoders are optimized for the multicell throughput
maximization. Compared to the sequential update by the ILA

algorithm, the WMMSE algorithm may converge faster due to
its distributively and simultaneously updating procedure [9].

B. Contributions of This Work

The main contribution of this work is the development
of low-complexity algorithms to solve the nonconvex WSR
maximization problem in the multicell MIMO-MAC. The two
approaches, namely ILA and WMMSE, are considered in
order to maximize the network WSR. In addition, this work
presents the distributed implementation of each algorithm,
which allows certain operations in the algorithm to be per-
formed in a distributed manner among the coordinated BSs
and MSs.

When applying the ILA algorithm to the multicell MIMO-
MAC, the approximation and decomposition step converts the
nonconvex problem into a sequence of multiple MAC sum-
rate maximization problems with interference-penalty terms,
where each problem corresponds to the MAC at each cell.
We then show that each decomposed problem is a convex
program, which facilitates the finding of its optimal solution
at its corresponding BS. However, due to the consideration
of multiple MSs per cell, a closed-form optimal solution to
the decomposed problem is not readily available. Instead, by
exploring the inherently decoupled constraints for the transmit
covariance matrix of each MS, we derive an equivalent opti-
mization problem that can be solved sequentially over each
variable matrix by a fast-converging algorithm. Interestingly,
the decomposition in the ILA algorithm then reveals the
structure of the optimal uplink precoders. In addition, the
ILA solution approach also reveals the message signaling
mechanism to facilitate its distributed implementation among
the coordinated cells.

When applying the WMMSE algorithm to the multicell
MIMO-MAC, we show that the network WSR maximization
problem can also be transformed into an equivalent WMMSE
problem. Taking SIC into consideration, we then show how to
optimally determine the precoders at the MSs, the minimum
MSE decoders, and the weight matrices at the BSs. In addi-
tion, we present the message passing mechanism among the
BSs themselves and between the BS and its connected MSs
in the multicell MIMO-MAC that facilitates the distributed
implementation of the WMMSE algorithm. For both ILA
and WMMSE algorithms, monotonic convergence to at least
local optimal solutions is subsequently proven. Simulation
results show that the proposed algorithms can significantly
improve the network WSR, in comparison of the multicell
system with no interference coordination among the BSs.1

The simulations also confirm the convergence analysis of the
proposed algorithms.

Notations: (X)T and (X)H denote the transpose and con-
jugate transpose (Hermitian operator) of the matrix X, respec-
tively; [X]m,n stands for the (m,n)th entry of the matrix X;
[X]+ denotes the component-wise operation max{[X]m,n, 0};
Tr{X}, |X|, and rank{X} denote the trace, determinant, and

1Without interference coordination, the BSs are said to be in competitive
mode where each BS selfishly maximizes the sum-rate for its connected MSs
only. This mode is sometimes referred to as the interference aware mode in
literature.
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rank of the matrix X, respectively; and x� denotes the optimal
value of the variable x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the multiuser uplink transmission of a multicell
system with Q separate cells operating on the same frequency
channel. At each cell, multiple MSs, each equipped with mul-
tiple transmit antennas, are sending independent data streams
to its connected multiple-antenna BS. For the simplicity of
presentation, it is assumed that the numbers of antennas at the
BS and MS are M and N , respectively, and the number of
MSs in each cell is K . Since the multicell system operates on
the same frequency channel, the intended signal from a MS to
a BS is now subject to the intra-cell interference from other
MSs in the same cell, as well as the inter-cell interference
from the MSs in other cells. In the interference coordination
design of this multicell system, the precoders at each MS are
jointly optimized to fully manage both the inter-cell and intra-
cell interferences.

Consider the MAC at a particular cell, say cell-q, the
received signal yq at its BS can be modeled as

yq =

K∑
i=1

Hqqixqi +

Q∑
r �=q

K∑
i=1

Hqrixri + z̃q, (1)

where xri ∈ CN×1 is the transmitted vector from the N -
antenna of MS-i in the rth cell, Hqri models the channel from
MS-i of cell-r to the qth base station, and z̃q is the zero-mean
additive Gaussian noise vector with the covariance matrix Zq .

Assuming linear precoding at each MS, the transmitted
signal from MS-i in cell-q can be expressed as

xqi = Vqisqi , (2)

where sqi ∈ CD×1 represents the information signal vector
for MS-i, and Vqi ∈ CN×D is the precoder matrix for MS-
i, and D = min(M,N) is the maximum number of spatial
data streams can be supported by MS-i. Without loss of
generality, columns of the precoding matrix Vqi may be set
to zero if the corresponding streams are not active. While our
formulation allows each MS to multiplex up to D independent
spatial streams., it may not be clear a priori how many spatial
streams are actually active (capable of carrying information
data). Instead, after the optimization process to determine the
optimal precoder Vqi for MS-i, the actual number of data
streams for MS-i can be determined easily by assessing the
rank of Vqi . It is assumed that E

[
sqis

H
qi

]
= I. In addition,

the precoder Vqi is constrained by transmit power limit Pqi ,
i.e.,

Tr
{
VqiV

H
qi

} ≤ Pqi . (3)

Let Xqi = E
[
xqix

H
qi

]
= VqiV

H
qi be the transmit covariance

matrix of MS-i of cell-q. Since rank{Xqi} = rank{Vqi},
should the optimization be carried over Xqi , assessing the rank
of Xqi then reveals the number of active streams supported by
MS-i of cell-q. Denote Xq = {Xqi}Ki=1 as the uplink precoder
profile of the K users in cell-q. Likewise, denote X−q =
(X1, . . . ,Xq−1,Xq+1, . . . ,XQ) as the precoding profile of

all cells except cell-q. Denote

zq =

Q∑
r �=q

K∑
i=1

Hqrixri + z̃q (4)

as the total ICI plus noise (IPN) at BS-q, and

Rq = E
[
zqz

H
q

]
=

Q∑
r �=q

K∑
i=1

HqriXriH
H
qri + Zq (5)

as the covariance matrix of the IPN at BS-q.
Per the interference coordination design being considered,

each BS only attempts to decode the signals from its con-
nected MSs using the capacity-achieving multiuser decoding
technique, namely successively interference cancelation (SIC)
[15]. For instance, BS-q employs SIC for the transmissions
from the K MSs within cell-q. Assuming the decoding order
from MS-1 (first) to MS-K (last), for a certain IPN covariance
Rq , the achievable rate of user-i in cell-q can be expressed as

Rqi(Xq,X−q) = log

∣∣∣Rq +
∑K

j=i HqqjXqjH
H
qqj

∣∣∣∣∣∣Rq +
∑K

j>i HqqjXqjH
H
qqj

∣∣∣ , (6)

where the intra-cell interference from user-1 to user-(i − 1)
has been suppressed. Collectively, the MAC sum-rate of all
K users in cell-q is given by [16]

Rq (Xq,X−q) =

K∑
i=1

Rqi

= log

∣∣∣∣∣I+R−1
q

(
K∑
i=1

HqqiXqiH
H
qqi

)∣∣∣∣∣ , (7)

where the denominators inside the log function are se-
quentially eliminated. Note that this sum-rate is obtained
when BS-q does not decode the transmissions from the
users in other cells. The network WSR is then given by∑Q

q=1 wqRq(Xq,X−q), where wq denoted the nonnegative
weight of cell-q. To maximize the network WSR, let us
consider the following optimization

maximize
X1,...,XQ

Q∑
q=1

wq log

∣∣∣∣∣I+R−1
q

(
K∑
i=1

HqqiXqiH
H
qqi

)∣∣∣∣∣ (8)

subject to Tr{Xqi} ≤ Pqi , ∀i, ∀q
Xqi � 0, ∀i, ∀q.

It is observed that problem (8) is clearly a nonconvex
problem due to the presence of Xqi ’s in interference terms
Rr’s, r �= q. Thus, obtaining the globally optimal solution
to the problem is computationally complex and intractable
for practical applications. It may also require a centralized
solver unit to obtain such a solution. In this case, designing
low-complexity algorithms with distributed implementation to
compute local optimizers becomes a more attractive option.
To this end, we examine two simple and fast converging
algorithms with the goals: (i) obtaining at least locally optimal
solutions to the problem, and (ii) distributed implementation
which does not require a centralized unit nor full CSI across
the coordinated cells.
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III. THE ITERATIVE LINEAR APPROXIMATION (ILA)
ALGORITHM

A. The Iterative Linear Approximation Solution Approach

This section presents a solution approach to the original
nonconvex problem (8) by considering it as a DC program
[10]–[12]. Specifically, by iteratively isolating and approxi-
mating the nonconvex part of the objective function, the DC
program shall be decomposed into multiple convex optimiza-
tion problems, which can be solved distributively at each
MS with low complexity. In addition, the iterative procedure
allows the MSs to continuously refine and improve their uplink
precoders, which eventually yields a local optimal solution of
the original problem.

Denote fq(Xq,X−q) =
∑Q

r �=q wrRr(Xq ,X−q) as the
WSR of all other cells except cell-q so that the network
WSR can be expressed as wqRq(Xq,X−q) + fq(Xq,X−q).
Since fq(Xq,X−q) is not a concave function in Xqi , we take
the approximation to this term. At a given value (X̄q, X̄−q),
taking the Taylor expansion of fq around X̄qi , i = 1, . . . ,K ,
and retaining the first linear term

fq(Xq, X̄−q) ≈fq(X̄q , X̄−q)−
K∑
i=1

Tr
{
Aqi

(
Xqi−X̄qi

)}
, (9)

where Aqi is the negative partial derivative of fq with respect
to Xqi , evaluated at Xqi = X̄qi , given at the bottom of this
page.

Using (9), the network WSR around X̄q , wqRq(Xq, X̄−q)+
fq(Xq, X̄−q), can be approximated as wqRq(Xq, X̄−q) −∑K

i=1 Tr{AqiXqi} +
[
fq(X̄q, X̄−q) +

∑K
i=1 Tr

{
AqiX̄qi

}]
.

Since the term fq(X̄q, X̄−q) +
∑K

i=1 Tr
{
AqiX̄qi

}
is now

fixed and consequently does not affect the maximization
of the network WSR. As a result, it can be omitted in
the objective function, i.e., maximizing wqRq(Xq, X̄−q) +
fq(Xq, X̄−q) is equivalent to maximizing wqRq(Xq , X̄−q)−∑K

i=1 Tr{AqiXqi}, and the nonconvex problem (8) can be
approximated as

maximize
Xq1 ,...,XqK

wq log

∣∣∣∣∣Rq+
K∑
i=1

HqqiXqiH
H
qqi

∣∣∣∣∣−
K∑
i=1

Tr{AqiXqi}

subject to Tr{Xqi} ≤ Pqi , ∀i (11)

Xqi � 0.

which can be solved solely at cell-q. In other words, the
optimization problem (8) can be approximately solved as Q
per-cell separate optimization problems (11).

It is observed that the approximated problem (11) is similar
to the MAC sum-rate maximization problem, studied in [16].

The difference here is the presence of the penalty term∑K
i=1 Tr{AqiXqi}, which encourages cell-q to adopt a more

cooperative precoding strategy by limiting the ICI to other
cells. Should this term be not presented, the multicell system
is said to be in competitive mode where each cell would
selfishly maximize the sum-rate for its connected users only.
This results in a noncooperative game among the cells, similar
to the game studied in [17] for the case of one MS per cell. We
shall present some numerical results for this noncooperative
design in comparison to the considered coordinated design.

Note that the decomposed problem (11), corresponding to
the precoder design at cell-q, is now a convex program, unlike
the original problem (8). Thus, it can be readily solved by any
efficient convex optimization techniques [18]. However, these
direct solution approaches may require a centralized solver
unit at the BS, and hence are not suitable for distributed
implementation at the MSs for the MAC. Fortunately, it is
observed that the constraints for each transmit covariance
matrix Xqi are inherently decoupled in problem (11). By
exploring this decoupled structure, the optimization (11) can
be solved sequentially over each variable matrix, like the MAC
sum-rate maximization problem in [16]. More importantly,
the optimization process over each variable can be performed
at the corresponding MS in a fully distributed manner. We
elaborate these observations in the following theorem and later
propose a fast-converging and distributed algorithm to solve
problem (11).

Theorem 1. For the K-user problem (11),
{
Xqi

}K
i=1

is an
optimal solution if and only if Xqi is the solution of the
following optimization problem

maximize
Xqi

wq log
∣∣∣I+R−1

qi HqqiXqiH
H
qqi

∣∣∣−Tr{AqiXqi}(12)

subject to Tr{Xqi} ≤ Pqi ,Xqi � 0,

where

Rqi = Rq +
K∑
j �=i

HqqjXqjH
H
qqj (13)

is considered as noise.

Proof: Please refer to Appendix A.
Since the structure of the optimal solution to problem (11)

has been revealed in Theorem 1, one can easily obtain its
optimal solution by sequentially solving problem (12) for
each user, i.e., MS-1 to MS-K in cell-q, until convergence.
We note that each problem (12) can be effectively solved by
the water-filling process, as presented in [8]. This sequential
optimization at cell-q accounts for the inner-loop iterative
precoder updates of the K MSs in cell-q.

Aqi = − ∂fq
∂Xqi

∣∣∣∣
Xqi

=X̄qi

= −
Q∑

r �=q

wr
∂Rr

∂Xqi

∣∣∣∣∣∣
Xqi

=X̄qi

=

Q∑
r �=q

wrH
H
rqi

⎡
⎢⎣R−1

r −
⎛
⎝Rr +

K∑
j=1

HrrjXrjH
H
rrj

⎞
⎠

−1
⎤
⎥⎦Hrqi

∣∣∣∣∣∣∣
Xqi

=X̄qi

. (10)
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For the problem of Q cells (8), the proposed ILA algorithm
requires each cell-q, q = 1, . . . , Q to continuously update the
parameters {Aqi}Ki=1 and take turns to solve its corresponding
optimization (11). This sequential procedure accounts for the
outer-loop iterative updates across the Q cells. We summarize
the ILA algorithm for the multicell MIMO-MAC in Algorithm
1. The convergence of the proposed ILA algorithm is given
in the following theorem.

Theorem 2. The Gauss-Seidel (sequential) iterative update
always improves network WSR and is guaranteed to converge
to at least a local maximum.

Proof: Please refer to Appendix B.
It is worth mentioning that the proposed ILA algorithm can

be executed by a central controller, which then passes the local
optimal precoders to the corresponding MSs. In this case, the
central controller must possess the full CSI knowledge of all
channels in the network. On the other hand, it is possible to
implement the proposed ILA algorithm in a distributed manner
by assigning certain optimization steps in the algorithm to
be performed each coordinated BS and MS. To this end,
we shall next present the interpretation to the ILA algorithm
that allows its distributed implementation. The complexity in
implementing the algorithm will be then discussed in Section
V.

B. Distributed Implementation of The Proposed ILA Algo-
rithm

In order to realize the distributed implementation of the
proposed ILA algorithm, we make the following assumptions:

• Assumption 1: Each MS knows the channel matrices
Hrqi’s to all the BS-r’s in the network. This assumption
allows the MS to control its induced ICI to other cells.

• Assumption 2: The coordinated BSs have reliable back-
haul channels to exchange control information among
themselves.

• Assumption 3: The channels are in block-fading or vary
sufficiently slow such that they can be considered fixed
during the optimization being performed.

It is noted that Algorithm 1 involves two levels of compu-
tations. At the inner-loop level, assuming Rq known at BS-q
and Aqi known at MS-i, cell-q performs the corresponding
optimization (11) autonomously using the result from Theo-
rem 1. The role of BS-q is to measure the total signaling plus
noise Rq +

∑K
i=1 HqqiXqiH

H
qqi , then pass this value to its

connected MSs. MS-i in cell-q, having known its channel to
its BS Hqqi , can compute the noise component Rqi . MS-i is
then required to update its uplink covariance matrix by solving
the optimization (12). This process, which corresponds to the
inner-loop iterations, is performed until convergence in cell-q.

At the outer-loop level, each BS needs to exchange the data
to compute the parameters {Aqi}Ki=1 for next update. It is
observed from equation (10) that MS-i in cell-q needs to know
the channels Hrqi’s to all the BSs (per Assumption 1), as well
as the pricing matrix

Br = R−1
r −

⎛
⎝Rr +

K∑
j=1

HrrjXrjH
H
rrj

⎞
⎠

−1

, (14)

Algorithm 1: ILA Algorithm for Multicell MIMO-MAC

1 Initialize {Xqi}∀q,∀i, such that Tr{Xqi} = Pqi ;
2 repeat
3 X̄qi ← Xqi ;
4 for q = 1, 2, . . . , Q do
5 Compute Rq with X̄qi at BS-q and exchange among

the BSs;
6 At BS-q, update the pricing matrix Aqi at MS-i and

perform ;
7 repeat
8 for i = 1, 2, . . . ,K do
9 Compute Rqi at the BS and pass it to MS-i;

10 Perform maximize
Xqi

wq log
∣
∣
∣I+

R−1
qi HqqiXqiH

H
qqi

∣
∣
∣− Tr {AqiXqi}, with

Tr{Xqi} ≤ Pqi at MS-i
11 end
12 until convergence;
13 end
14 until convergence;

in order to compute Aqi . Thus, it is required that each BS
needs to compute its corresponding price Bq, q = 1, . . . , Q,
using local measurements on the IPN Rq and the total signal
plus IPN Rq +

∑K
i=1 HqqiXqiH

H
qqi . These factors are then

exchanged among the BSs. Using the messages received from
other cells, BS-q then can easily pass {Br}r �=q to its connected
MSs before the inner-loop iterative procedure. The outer-
loop iteration is performed until the WSR reaches to a local
maximum, as stated in Theorem 2.

Remark 1: It is shown in Theorem 2 that the proposed
ILA algorithm allows the uplink precoders to be refined and
improved after each Gauss-Seidel update, which ultimately
converges to a local maximum. However, this update mech-
anism requires all the BSs to compute the pricing matri-
ces Bq’s and exchange them within the network, after one
cell updates its precoding matrices. To reduce the amount
of information exchanges among the coordinated cells, the
proposed algorithm can be also implemented using the Ja-
cobi (simultaneous) iterative update. In particular, after the
exchange of the pricing matrices, all the cells simultaneously
update their precoding matrices. Specifically, the inner-loop
iterations can be performed independently and concurrently
in each cell. Although the convergence of the Jacobi update
is not analytically proved, most of the numerical simulations
confirm its rapid convergence rate. Thus, in our simulations
for the ILA algorithm, we utilize the Jacobi update instead of
the Gauss-Seidel to reduce the computational time.

Remark 2: When the multicell MIMO-MAC system oper-
ates under the competitive mode, the update of the precoders
across the Q cells also involve two levels of iterations. In
an outer-loop iteration, each BS, say BS-q, needs to measure
its IPN covariance matrix Rq. In an inner-loop iteration, BS-
q needs to continuously measure and pass its total signal
plus IPN Rq +

∑K
i=1 HqqiXqiH

H
qqi to its K connected MSs,

while the MSs at cell-q take turns to selfishly maximize
the MAC sum-rate of cell-q by the iterative water-filling
procedure [16]. Compared to this competitive mode, the ILA
algorithm requires the inter-BS signaling in each outer-loop
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iteration for exchanging the pricing matrices Bq’s. However,
the pricing matrices Br, r �= q are required to be passed
from BS-q to its K connected MSs only once time before
the inner-loop iterations. Thus, the ILA algorithm does require
a rather similar amount of intra-cell BS-MS signaling as the
competitive mode.

IV. THE WEIGHTED MINIMUM MEAN SQUARED ERROR

(WMMSE) ALGORITHM

A. The Weighted Minimum Mean Squared Error Solution
Approach

In Section III, we have examined a linear convex ap-
proximation technique to solve the nonconvex optimization
problem (8) by successively improving the uplink covariance
matrices at the MSs. In this section, we examine a different
approach to solve this optimization problem by relating it
to a matrix-weighted sum-MSE minimization problem. In
particular, the new problem of interest is to alternately find the
transmit beamformers Vqi ’s and their corresponding receive
beamformers Uqi ’s, which shall be characterized shortly.

With Vqi ’s as the variables to be optimized, the optimiza-
tion problem (8) can be restated as

maximize
{Vqi}∀i,∀q

Q∑
q=1

wq

K∑
i=1

Rqi (15)

subject to Tr{VqiV
H
qi} ≤ Pqi , ∀i, ∀q,

where the achievable rate Rqi , given in (6), can be rewritten
as

Rqi = log

∣∣∣Rq +
∑K

j=i HqqjVqjV
H
qjH

H
qqj

∣∣∣∣∣∣Rq +
∑K

j>i HqqjVqjV
H
qjH

H
qqj

∣∣∣ (16)

with Rq =
∑Q

r �=q

∑K
j=1 HqrjVrjV

H
rjH

H
qrj + Zq .

It is noted that this achievable rate can be stated as a func-
tion of the error covariance matrix after the MMSE receive
filtering. Since SIC is applied at each BS to its connected
MSs, the signal from user-i is not corrupted by the intra-cell
interference from user-i to user-(i − 1). Thus, while treating
the interference as noise, the estimated signal for user-i in
BS-q is then given by

ŝqi = UH
qi

⎛
⎝ K∑

j=i

HqqjVqjsqj + zq

⎞
⎠ , (17)

where UH
qi is the linear receive beamformer for user-i. This

receive beamformer is designed such that the MSE for the
data streams from user-i of cell-q is minimized. As the MSE
matrix Eqi is obtained from

Eqi = E
[
(ŝqi − sqi)(ŝqi − sqi)

H
]

=
(
I−UH

qiHqqiVqi

) (
I−UH

qiHqqiVqi

)H
+

K∑
j>i

UH
qiHqqjVqjV

H
qjH

H
qqjUqi

+

Q∑
r �=q

K∑
j=1

UH
qiHqrjVrjV

H
rjH

H
qrjUqi+UH

qiZqUqi ,(18)

the optimal receive beamformer is indeed the well-known
MMSE filter

Uqi = argmin
Uqi

‖Eqi‖

=

⎛
⎝ K∑

j=i

HqqjVqjV
H
qjH

H
qqj

+

Q∑
r �=q

K∑
j=1

HqrjVrjV
H
rjH

H
qrj + Zq

⎞
⎠

−1

HqqiVqi . (19)

Consequently, the minimum MSE for user-i in cell-q is given
by

EMMSE
qi = I−UH

qiHqqiVqi

=

⎡
⎣I+VH

qiH
H
qqi

⎛
⎝ K∑

j>i

HqqjVqjV
H
qjH

H
qqj

+

Q∑
r �=q

K∑
j=1

HqrjVrjV
H
rjH

H
qrj+Zq

⎞
⎠

−1

HqqiVqi

⎤
⎥⎦
−1

.(20)

Given (16) and (20), the well-known relationship between
the data rate and the MMSE matrix can be stated as

Rqi = log
∣∣∣(EMMSE

qi

)−1
∣∣∣ . (21)

Utilizing this relationship, we establish the equivalence be-
tween the WSR maximization problem in the multicell
MIMO-MAC and the matrix-weighted sum-MSE minimiza-
tion in the following theorem.

Theorem 3. The multicell MIMO-MAC WSR maximization
problem (15) is equivalent to the following matrix weighted
sum-MSE minimization

minimize
Wqi

,Vqi
,Uqi

Q∑
q=1

wq

K∑
i=1

[
Tr {WqiEqi} − log |Wqi |

]
(22)

subject to Tr
{
VqiV

H
qi

} ≤ Pqi , ∀q, ∀i,
where Wqi � 0 is the weight matrix for MS-i at cell-q.
In particular, the globally optimal solutions {V}∀q,∀i are
identical for the two problems.

Proof: The proof for this theorem follows the same spirit
as in [9], [13] for the case of downlink transmission. First, it
is noticed that there is no constraints to the weight matrices
Wqi ’s and the receive beamformers Uqi ’s in problem (22).
Fixing all other variables, the optimal weight matrices Wqi ’s
are given by

Wqi = E−1
qi = I−UH

qiHqqiVqi . (23)

On the other hand, the optimal receive beamformers Uqi ’s to
problem (22) are the MMSE receivers, given in (19). Thus,
with the optimal Wqi ’s and Uqi ’s, the following optimization
problem is equivalent to problem (22)

minimize
{Vqi}∀i,∀q

Q∑
q=1

wq

K∑
i=1

log
∣∣EMMSE

qi

∣∣ (24)

subject to Tr
{
VqiV

H
qi

} ≤ Pqi , ∀q, ∀i.
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This problem is indeed the WSR maximization problem for
the multicell MIMO-MAC (15), due to the connection between
the MMSE matrix EMMSE

qi and the rate Rqi given in (21).
Having established the equivalence between the two opti-

mization problems (15) and (22), we now proceed to solve
the latter problem, which then prompts the solution to the
former one. Note that the objective function in (22) is convex
in each of the optimization variables Uqi ,Vqi ,Wqi . Thus, it
is possible to solve problem (22) by alternately optimizing one
of the variables while fixing the other two until convergence.
First, with fixed transmit beamformers Vqi ’s, the receive
beamformers Uqi ’s are optimally designed as in (19). Second,
fixing the transmit and receive beamformers Vqi ’s and Uqi ’s,
the weighted-matrices Wqi ’s are updated in a closed form
solution, given in (23). Finally, by decomposing the objective
function in (22), the update transmit beamformers Vqi ’s are
carried by solving decoupled optimization problems across the
MSs

minimize
Vqi

wqTr
{
Wqi

(
I−UH

qiHqqiVqi

)(
I−UH

qiHqqiVqi

)H}

+wq

i−1∑
j=1

Tr
{
WqjU

H
qjHqqiVqiV

H
qiH

H
qqiUqj

}

+wr

Q∑
r �=q

K∑
j=1

Tr
{
WrjU

H
rjHrqiVqiV

H
qiH

H
rqiUrj

}
(25)

subject to Tr
{
VqiV

H
qi

} ≤ Pqi .

It is noted that this optimization can be carried indepen-
dently and simultaneously across the MSs. As stated in [9],
[13], this problem is a convex quadratic program, which can be
optimally solved by standard optimization techniques. Using
the Lagrangian duality, the optimal solution to (25) can be
derived as

Vqi = wq

⎛
⎝ Q∑

r �=q

K∑
j=1

wrH
H
rqiUrjWrjU

H
rjHrqi

+

i∑
j=1

wqH
H
qqiUqjWqjU

H
qjHqqi+μ�

qiI

⎞
⎠

−1

HH
qqiUqiWqi ,

(26)

where μ�
qi is the optimal Lagrangian multiplier associated with

the power constraint at the MS. It is noticed that in case of
μ�
qi = 0 resulting in Tr

{
VqiV

H
qi

}
< Pqi , the corresponding

MS effectively does not transmit at full power. Otherwise, μ�
qi

can be easily obtained by the bisection method such that the
power constraint is met with equality.

We summarize the proposed WMMSE algorithm for the
multicell MIMO-MAC as in Algorithm 2. In this algorithm,
at each outer-loop iteration, the updates can be performed
simultaneously across the Q coordinated cells. At each cell-q,
the corresponding BS-q sequentially updates the receive beam-
formers Uqi and the weight matrices Wqi for its MS-i for i
from 1 to K . After that, the transmit beamformers Vqi ’s can
be updated simultaneously by its MS-i. The iterative process
is performed until each variable converges to a local optimal
solution. We summarize the convergence and the optimality of
the proposed WMMSE algorithm in the following theorem.

Algorithm 2: WMMSE Algorithm for Multicell MIMO-
MAC

1 Initialize {Vqi}∀q,∀i, such that Tr{VqiV
H
qi} = Pqi ;

2 repeat
3 Set V̄qi ← Vqi , ∀q,∀i;
4 Simultaneously update across Q cells;
5 for q = 1, . . . , Q do
6 At the BS, sequentially update the receive beamformers

and weight matrices;
7 for i = 1, . . . ,K do
8 Update Uqi as in (19);
9 Update Wqi as in (23);

10 end
11 At the K MSs, simultaneously update the transmit

matrices Vqi ,∀i as in (26);
12 end
13 until convergence;

Theorem 4. The alternating minimization process in the pro-
posed WMMSE algorithm results in a monotonic decreasing
of the objective function in problem (22). For any limit point
(W�

qi ,U
�
qi ,V

�
qi) as the minimizer of problem (22), V�

qi is also
a local minimizer of the original problem (15).

Proof: Please refer to Appendix C.
Like the ILA algorithm, the WMMSE algorithm can be im-

plemented either at a central controller or distributively across
the BSs and MSs, as being discussed in the following section.
The complexity in implementing the WMMSE algorithm shall
be addressed in Section V.

B. Distributed Implementation of the Proposed WMMSE Al-
gorithm

Note that the proposed WMMSE algorithm is executed by
alternately computing the receive beamformers and the weight
matrices at the BSs and computing the transmit beamformers
at the MSs. Under the same assumptions stated in Section
III-B, the WMMSE algorithm can be implemented in a
distributed manner as follows.

At the receiving end, each BS, say BS-q, needs to locally
measure its IPN covariance matrix Rq and estimate the
transmit beamformers Vqi from its connected MSs. Knowing
the decoding order, BS-q updates its receive beamformers
Uqi ’s and the weight matrices Wqi ’s with local informa-
tion as stated in (19) and (23). BS-q then computes the
matrix wq

∑K
i=1 UqiWqiU

H
qi and exchange it to the other

coordinated BSs in the network. Subsequently, BS-q passes
the updated matrices wr

∑K
j=1 UrjWrjU

H
rj ’s as well as the

matrix wq

∑i
j=1 UqjWqjU

H
qj to its ith connected MS. At the

transmitting end, MS-i then optimizes its transmit beamform-
ing Vqi within its power limit as stated in Equation (25) and
feeds back the updated Vqi to BS-q.

Remark 3: In comparing to the sequential update in the
ILA algorithm, the proposed WMMSE algorithm allows si-
multaneous updates across the coordinated BSs and across the
MSs. This is due to the fact that the updating steps for the
receive beamformers Uqi ’s and the weight matrices Wqi ’s
are decoupled among the BSs, whereas the updating steps
for the transmit beamformers Vqi ’s are decoupled among
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TABLE I
COMPLEXITY OF THE PROPOSED ALGORITHMS

Algorithm Operation Message
Type

Complexity Number of
Operations

Total Complexity

ILA Rq in Eq. (5) BS-Local O(KQL3) Q O(KQ2L3)
Bq in Eq. (14) BS ↔ BS

BS ↔ MS
O(KL3) Q O(KQL3)

Rqi in Eq. (13) BS ↔ MS O(KL3) K O(K2L3)
Aqi in Eq. (10) MS-Local O(QL3) K O(KQL3)
Xqi in Eq. (27) MS-Local O(L3) K O(KL3)

ILA - Gauss-Seidel O(KQ3L3 +K2QL3)
ILA - Jacobi O(KQ2L3 +K2QL3)

WMMSE Rq in Eq. (5) BS-Local O(KQL3) Q O(KQ2L3)
Uqi in Eq. (19) sequentially BS-Local O(L3) KQ O(KQL3)
Wqi in Eq. (23) sequentially BS-Local O(L3) KQ O(KQL3)

wq
∑K

i=1 UqiWqiU
H
qi

BS ↔ BS
BS ↔ MS

O(KL3) Q O(KQL3)

wq
∑i

j=1 UqiWqiU
H
qi

BS ↔ MS O(L3) KQ O(KQL3)

Vqi in Eq. (26) MS-Local O(L3) KQ O(KQL3)
WMMSE O(KQ2L3)

the MSs. Between the two periods of simultaneous updates
at BSs and at MSs, the BSs need to exchange the matrices
wq

∑K
i=1 UqiWqiU

H
qi ’s.

V. COMPLEXITY OF THE PROPOSED ALGORITHMS

In this section, we analyze the complexity in implementing
the proposed ILA and WMMSE algorithms in a multicell
system. Similar to the approach used in [9], the complexity
of each algorithm is analyzed in each outer-loop iteration.
Note that an outer-loop iteration can be also defined as an
instance of signaling exchange among the BSs. To simplify
the complexity analysis, let us denote L = max{M,N}.
In Table I, we enumerate the complexity in undertaking the
operations (by computing the listed variables) at each iteration
as well as the total complexity of each algorithm. In addition,
if an algorithm is to be implemented in a distributed manner,
Column 3 “Message Type” in Table I classifies whether an
operation is taken at the BS, i.e., BS-Local, or at the MS,
i.e., MS-Local. The column also classifies whether a variable
obtained from its corresponding operation is passed as a
signaling message among the BSs, i.e., BS ↔ BS, or between
the BS and its connected MSs, i.e., BS ↔ MS. We elaborate
the content of Table 1 in the following.

In the ILA algorithm, at each iteration, the covariance
matrix of the ICI plus noise Rq must be computed at BS-
q. As given in (5), Rq is approximately the summation of
KQ components, where matrix multiplication in each com-
ponent HqriXriHqri yields the complexity of O(L3). Thus,
the complexity of computing Rq is O(KQL3). Similarly,
the calculation of each pricing matrix Bq in (14), involves
two matrix inversions and a summation of K components
HqqiXqiHqqi , yields the complexity of O(KL3). The same
technique can be applied to the calculations of Rqi , Aqi ,
and Xqi . With the Gauss-Seidel update, only one cell at the
time, say cell-q, updates its K matrices Aqi , i = 1, . . . ,K ,
which yields the complexity of O(KQL3). The optimization
at cell-q then involves the calculation of the noise matrices
Rqi’s and their inverses. Thus, ignoring the few iterations
by the bisection step in optimizing the transmit covariance

at each MS, this optimization shall take the complexity of
O(K2L3). Consequently, in order to sequentially update all
the transmit covariances across all Q cells, one has the
complexity of O(KQ3L3+K2QL3). On the contrary, with the
Jacobi update, all the precoders can be updated simultaneously
across the Q cells, after each instance of calculating the IPN
matrices Rq’s and the pricing matrices Bq’s. In this case,
the complexity of the ILA algorithm with the Jacobi update
is O(KQ2L3 + K2QL3), which is lower than that with the
Gauss-Seidel update by a factor of Q.

Similar to the complexity analysis of the ILA algorithm,
the complexity of the WMMSE algorithm can be found
to be O(KQ2L3). First, calculating the IPN covariance
matrices Rq, q = 1, . . . , Q, and the signaling messages
wq

∑K
i=1 UqiWqiU

H
qi , q = 1, . . . , Q, yields the overall com-

plexity of O(KQ2L3). Second, utilizing the calculated IPN
matrix Rq at BS-q, the receive beamformers Uqi ’s and
weight matrices Uqi ’s can be updated sequentially from MS-
1 (first) to MS-K (last), which yields the overall complex-
ity of O(KQL3). Third, the complexity of updating KQ
transmit beamformers Vqi ’s is O(KQL3). Thus, per outer-
loop iteration, in order to update the receive beamformers, the
weight matrices, and the transmit beamformers for Q cells
in the network, the complexity of the WMMSE algorithm is
O(KQ2L3), which is comparable to that of the ILA algorithm
with the Jacobi update.

Remark 4: In term of total computational complexity, the
distributed implementation of each algorithm is roughly the
same as the its centralized implementation. In term of imple-
mentation, the distributed approach requires certain message
passing among the coordinated BSs and MSs, as detailed in
Table I. In addition, Table I also quantifies the number of mes-
sages that need to be exchanged at each outer-loop iteration.
In the distributed implementation structure, the computation
load in the optimization process can be shared across the
coordinated BSs and MSs.

VI. SIMULATION RESULTS

This section presents simulation results on the achievable
sum-rate of a multicell system in the uplink transmission
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Fig. 1. A multiuser multicell system with 3 cells, 3 MSs per cell. Each MS
is randomly located at a distance d from its connected BS.

under various levels of coordination and on the convergence
behaviors of the proposed ILA and WMMSE algorithms.
We compare the results for three operating modes: (i) the
interference coordination mode obtained from the proposed
ILA and WMMSE algorithms (with equal weight for each
cell), (ii) the competitive mode where each cell selfishly
maximizes the sum-rate for its connected MS only, and (iii)
the network MIMO mode where the whole system is a single
large MIMO MAC channel. Considered is a 3-cell system,
where the distance between any two BSs is normalized to
2, as illustrated in Fig. 1. The number of MSs is set to 3
per cell, unless stated otherwise, and each MS is randomly
located on a circle at distance d from its connected BS. The
BS and MS are equipped with 4 and 2 antennas, respectively.
The transmit power of each MS is limited to 1 W. The
intra-cell and inter-cell channel coefficients are generated as
products of two components: the first components account for
the large-scale path loss with a path loss exponent of 3, and
the second components represent the small-scale fading using
i.i.d. complex Gaussian random variables with zero mean and
unity variance. The AWGN power spectral density σ2 is set
at 0.01 W/Hz.

We first investigate the achievable network sum-rates versus
the intra-cell MS-BS distance d of the various algorithms,
which are run until fully converged. As d is varied, 10, 000
channel realizations at each value of d are used to obtain the
average network sum-rates plotted in Fig. 2. As shown in the
figure, when the distance d becomes smaller, the network sum-
rate increases in all 3 operating modes. This is due to the
increase in strength of intra-cell channels and the reduction
in the strength of inter-cell channels. Out of the 3 operating
modes, network MIMO obtains the largest sum-rate, as it is
the upper bound for any uplink multicell transmission scheme.
It is also observed that by implementing the interference
coordination among the cells using the proposed algorithms
(ILA and WMMSE), one can improve the network sum-rate
by 5 to 15 b/s/Hz over the competitive mode, especially at
high ICI region (large d). Note that the performances of the
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Fig. 2. Network sum-rates under the considered operating modes.
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Fig. 3. Network sum-rates under the interference coordination mode,
obtained from the ILA and WMMSE algorithms with 10 random starting
points or with 10 outer-loop iterations.

interference coordination mode are obtained from the same
initialization with VqiV

H
qi = Xqi = (Pqi/N)I for both ILA

and WMMSE algorithms. Fig. 2 shows that there is literally
no difference in the performances obtained from the ILA and
WMMSE algorithms with the same identity matrix starting
point. In other words, they both converge to the same local
maximum most of the time.

As the proposed ILA and WMMSE algorithms do not
guarantee a globally optimal performance, it is interesting to
investigate the effects of the starting point on their achieved
network sum-rate. For this, we run simulations for 10 different
randomly generated starting points and record the best sum-
rate result out of the 10 fully converged maxima for each
algorithm. The resulting plots for the 2 proposed algorithms
designated by ILA-10 random, and WMMSE-10 random, in
Fig. 3 show a negligible performance difference between the
two proposed algorithms, and a slightly increased network
sum-rate as compared to the case with identity matrix starting
point in Fig. 2. This close performance indicates that the
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Fig. 4. Convergence of the proposed ILA and WMMSE algorithms to
maximize the network sum-rate with the interference coordination.

identity matrix is a good and simple choice for the starting
point. As previously discussed, both the proposed ILA and
WMMSE algorithms enjoy the monotonic convergence, but
require the coordinated cells to exchange signaling information
after each outer-loop iteration. For practical implementation,
it may be desirable to limit the number of iterations in
order to reduce the amount of signaling exchange and it
is interesting to understand the effect of number of itera-
tions on their performance. For illustration, we include in
Fig. 3 the plots ILA-10 iteration, WMMSE-10 iteration, and
Competition-10 iteration representing the achieved network
sum-rates after 10 outer-loop iterations of the ILA, WMMSE
algorithms and competitive mode, respectively. The simulation
results in Fig. 3 indicate that the ILA algorithm is faster
to achieve its converged performance than the WMMSE
algorithm in terms of the number of outer-loop iterations.
Both algorithms outperform the competitive mode after just
10 iterations. Note that the ILA algorithm in this simulation is
implemented with the Jacobi update. Thus, it requires a similar
amount of inter-BS signaling as the WMMSE algorithm.

To investigate further their convergence behavior, we obtain
simulation results for a specific channel realization with d =
0.5 and plot the network sum-rates achieved after each outer-
loop iteration by ILA using Jacobi and Gauss-Seidel updates,
WMMSE, and competition (for comparison). As observed in
Fig. 4, the interference coordination mode, obtained by the
ILA and WMMSE algorithms, offers higher network sum-rate
than the competitive mode. It is also observed that the ILA
algorithm does monotonically converge with both Jacobi and
Gauss-Seidel updates. The network sum-rate is also improved
monotonically by the WMMSE algorithm. These convergence
behaviors of the ILA and WMMSE algorithms agree with our
analysis. Interestingly, Fig. 4 confirms that the ILA algorithm
has a faster convergence than the WMMSE algorithm in terms
of number of outer-loop iterations. This observation explains
why the ILA algorithm obtains better sum-rate performance
than the WMMSE algorithm after 10 outer-loop iterations as
shown in Fig. 3.
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Fig. 5. Convergence of the proposed iterative algorithm to solve Problem
(11).

As previously discussed, WMMSE algorithm has only
outer-loop iterations while ILA has both inner-loop and outer-
loop iterations. To investigate its inner-loop convergence, in
Fig. 5, we plot the sum-rate achieved at cell-1 after each
number of inner-loop iterations by the ILA, for the same
channel realization used in Fig. 4, and at outer-loop iteration
#2 (when Aqi ’s are now non-zero). Note that the inner-loop
iterations in the ILA algorithm involve the proposed algorithm
in Theorem 1 to maximize the MAC sum-rate with penalty
terms (11). For comparison, the convergence of inner-loop
iterations in the competitive mode, i.e., the iterative water-
filling algorithm for MAC sum-rate maximization [16], is also
illustrated. Fig. 5 indicates that, at the outer-loop iteration
#2, due to the penalty terms, the ILA inner-loop algorithm
achieves lower sum-rate in cell-1 than the competitive mode
(without the penalty terms). However, as the cell adopts a
more cooperative strategy by limiting the ICI to other cells,
the overall network sum-rate performance is indeed improved,
as shown in Fig. 4.

Finally, Fig. 6 compares the CPU running time of the
proposed ILA and WMMSE algorithms versus the number
of MSs at each cell under the same termination criterion. Al-
though the CPU running time is rather relative, all algorithms
are programmed with the same code implementation and run
on the same platform, which allows us to realize the relative
trend in computational complexity of each algorithm. As
shown in the figure, the ILA algorithm with the Jacobi update
shall improve the running time over that with the Gauss-Seidel
update roughly by a factor of Q = 3. Interestingly, while
the WMMSE requires more outer-loop iterations, i.e., more
inter-BS signaling exchange, it has less running time than
the ILA algorithm. Intuitively, the WMMSE does not require
the inner-loop iterations, while the ILA algorithm does for
sequentially optimizing precoders at a particular cell. Thus, the
WMMSE algorithm imposes less intra-cell BS-MS operation
and signaling than the ILA algorithm. In fact, the running
time of the WMMSE algorithm is almost linear with K , as
our complexity analysis indicates.
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Fig. 6. Average CPU time versus the number of MSs per cell.

VII. CONCLUSION

This paper examined the problem of WSR maximization
in the multicell MIMO MAC. Under the interference coor-
dination mode among the multiple cells, the network WSR
maximization problem was shown to be nonconvex. The
paper then proposed two solution approaches, namely ILA
and WMMSE, to approximate and transform the original
nonconvex problem into convex optimization ones. In the ILA
approach, the nonconvex optimization problem is successively
approximated and decomposed into a set of convex prob-
lems, which can be solved distributively at each MS. In the
WMMSE algorithm, by transforming the original problem into
a weighted MSE minimization problem, the network WSR
is maximized by alternatively optimizing the weight matrices
and MSE decoders at each BS and the precoder at each
MS. Simulations confirmed the convergence analysis of the
proposed algorithm and showed a significant enhancement in
the network sum-rate as compared to competitive design.

APPENDIX A
PROOF TO THEOREM 1

The proof for this theorem follows the similar approach
used in [16] for the sum-rate maximization in the MAC
without the penalty components

∑K
i=1 Tr{AqiXqi}. Before

proceeding to the main part of the proof, we briefly revisit the
solution of problem (12), which was previously given in [8].

Given μqi as the Lagrangian multiplier associated with the
power constraint Tr{Xqi} ≤ Pqi , it was shown in [8] that the
optimal solution X�

qi must be in the form of

X�
qi = GqiPqiG

H
qi , (27)

where Gqi is the (normalized) generalized eigen-matrix of
the pair of matrices of HH

qqiR
−1
qi Hqqi and (Aqi + μqiI). The

matrix Pqi is a nonnegative diagonal matrix, obtained from
the following water-filling solution

Pqi =
[
wqΣ

(2)−1

qi −Σ(1)−1

qi

]+
, (28)

where Σ(1)
qi and Σ(2)

qi are diagonal matrices given by

Σ(1)
qi = GH

qiH
H
qqiR

−1
qi HqqiGqi

Σ(2)
qi = GH

qi (Aqi + μqiI)Gqi .

In this solution, the dual variable μqi , behaving as the water-
level in the water-filling process, is adjusted to enforce the
power constraint. Utilizing this optimal solution, we now
show that the optimal solution to the multiuser problem (11)
is indeed a collection of solutions to individual single-user
problems (12).

If part: Let {X̄qi}Ki=1 be the optimal solution of the original
K-user problem (11). Suppose that X̄qi is not the optimal
solution of the corresponding problem (12) while treating
Rqi = Rq +

∑
j �=i Hqqj X̄qjH

H
qqj as noise. Then fixing

all other covariance matrices X̄qj , ∀j �= i, solving problem
(12) obtains the optimal solution X�

qi . Clearly, X�
qi strictly

increases the objective function of the original problem (11).
Thus, this contradicts with assumption on the optimality of
{X̄qi}Ki=1.

Only if part: Consider the partial Lagrangian of problem
(11)

L(Xqi ,µq) =

K∑
i=1

μqiPqi + wq log

∣∣∣∣∣Rq +

K∑
i=1

HqqiXqiH
H
qqi

∣∣∣∣∣
−

K∑
i=1

Tr {(Aqi + μqiI)Xqi} , (29)

where µq = [μq1 , . . . , μqK ]T are the Lagrangian dual variables
associated with the power constraints. For optimality, the
solution of problem (11) must satisfy the following Karush-
Kuhn-Tucker (KKT) conditions

wqH
H
qqi

(
Rq+

K∑
i=1

HqqiXqiH
H
qqi

)−1

Hqqi = Aqi+ μqiI, ∀i

Tr {Xqi} = Pqi , ∀i
μqi ≥ 0, ∀i.

For the case of K = 1, it is straightforward to verify that
the optimal solution of problem (12), X�

qi = GqiPqiG
H
qi ,

with Pqi given in (28), satisfies the above KKT conditions.
However, the KKT conditions for the single-user case are
different from that for the multiuser case by the additional
noise term

∑
j �=i HqqjXqiH

H
qqj . Thus, if each X�

qi satisfies the
single-user condition while treating the signals of other MSs
as noise, then collectively, the set of {X�

qi}Ki=1 must satisfy the
above KKT conditions for the multiuser case. Then, {X�

qi}Ki=1

must be the optimal solution to the original problem (11).

APPENDIX B
PROOF TO THEOREM 2

Similar to the approach in [7], [8], the proof for this theorem
is established by showing that the network sum-rate is strictly
nondecreasing after an update at any given cell. Suppose
that Xq = X̄q =

{
X̄qi

}K
i=1

, ∀q from the previous outer-

loop iteration, and X�
q =

{
X�

qi

}K
i=1

as the optimal solution
obtained at cell-q after the current outer-loop iteration.
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Similar to the technique applied in [6], [8], it can be easily
shown that fq(Xq,X−q) is a convex function with respect to
Xqi ∈ Sqi � {Xqi |Xqi � 0,Tr{Xqi} ≤ Pqi}. Thus, by the
first-order condition for the convex function fq [18], one has

fq(X
�
q , X̄−q) ≥ fq(X̄q, X̄−q)−

K∑
i=1

Tr
{
Aqi(X

�
qi − X̄qi)

}
(30)

with Aqi being defined in (10) at X̄qi .
After one Gauss-Seidel iteration, the network weighted

sum-rate is updated such that

Q∑
q=1

wqRq(X
�
q , X̄−q)

= wqRq(X
�
q , X̄−q)+fq(X

�
q , X̄−q)

≥ wqRq(X
�
q , X̄−q)+fq(X̄q, X̄−q)−

K∑
i=1

Tr
{
Aqi(X

�
qi−X̄qi)

}

≥ wqRq(X̄q, X̄−q)+fq(X̄q, X̄−q)−
K∑
i=1

Tr
{
Aqi(X̄qi−X̄qi)

}

=

Q∑
q=1

wqRq(X̄q, X̄−q),

where the first inequality is due to the one in (30), and the
second inequality is due to X�

q as the optimal solution of prob-
lem (11). Since the network sum-rate is upper-bounded and
nondecreasing after each update, the sequential optimization
(11) generates a Cauchy sequence that must converge to one
of the local maxima.

APPENDIX C
PROOF TO THEOREM 4

Denote

f({Vqi}) =
Q∑

q=1

wq

K∑
i=1

log
∣∣∣EMMSE

qi

∣∣∣ (31)

and

g({Uqi}, {Wqi}, {Vqi})

=

Q∑
q=1

wq

K∑
i=1

[
Tr {WqiEqi} − log |Wqi |

]
(32)

as the cost functions of the original problem (15) and the
restated WMMSE problem (22).

Since the constraint set of problem (22) is decoupled for
the variables Uqi ,Wqi ,Vqi , applying the block coordinate
descent method by alternative minimizing over Uqi ,Wqi ,Vqi

must decrease its cost function monotonically [19]. In addi-
tion, the power constraint on Vqi is upper-bounded, the cost
function (32) is lower-bounded. Thus, the proposed WMMSE
must monotonically converge to at least a local minimum of
the cost function (32). Note that the cost function of the orig-
inal sum-rate maximization problem (15) does not necessarily
improve after each iteration. However, given (U�

qi ,W
�
qi ,V

�
qi)

as a local minimizer of problem (22) obtained from the
WMMSE algorithm, it can be proved that V�

qi is also a local
minimizer of the original problem (15) as follows.

First, we need to show that the gradients of f(·) and g(·)
with respect to Vqi are the same at V�

qi . Similar to the
approach in [9], [13], evaluating the gradients of f(·) and
g(·) at the (m,n)-element of Vqi , one has

∂f({Vqi})
∂[Vqi ]m,n

∣∣∣∣
Vqi

=V�
qi

=

Q∑
r=1

wr

K∑
j=1

∂ log
∣∣EMMSE

rj (Vqi )
∣∣

∂[Vqi ]m,n

∣∣∣∣∣
Vqi

=V�
qi

=

Q∑
r=1

wr

K∑
j=1

Tr

{(
EMMSE

rj (V�
qi)
)−1

× ∂EMMSE
rj (Vqi)

∂[Vqi ]m,n

∣∣∣∣∣
Vqi

=V�
qi

}
, (33)

and

∂g({Uqi}, {Wqi}, {Vqi})
∂[Vqi ]m,n

∣∣∣∣
Vqi

=V�
qi
,Uqi

=U�
qi

=

Q∑
r=1

wr

K∑
j=1

Wrj

∂Erj (Uqi ,Vqi)

∂[Vqi ]m,n

∣∣∣∣
Vqi

=V�
qi
,Uqi

=U�
qi

=

Q∑
r=1

wr

K∑
j=1

W�
rj

∂Erj (U
�
qi ,Vqi)

∂[Vqi ]m,n

∣∣∣∣
Vqi

=V�
qi

. (34)

Since W�
rj =

(
EMMSE

rj (V�
qi )
)−1

=
(
Erj (U

�
qi ,V

�
qi)
)−1

,
which yields the equivalence between (33) and (34). In addi-
tion, because (U�

qi ,W
�
qi ,V

�
qi) is a local minimizer of problem

(22), it must satisfy the stationarity condition:

Tr
{∇Vqi

g(U�
qi ,W

�
qi ,V

�
qi)

H(Vqi −V�
qi

} ≤ 0, ∀Vqi . (35)

Conversely, due to the equivalence between (33) and (34), V�
qi

also satisfies the stationarity condition:

Tr
{∇Vqi

f(V�
qi)

H(Vqi −V�
qi

} ≤ 0, ∀Vqi . (36)

Thus, Vqi must be also a local minimizer to the original
problem (15).
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