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Abstract—This paper studies the precoding designs to maximize
the weighted sum-rate (WSR) in a multicell multiple-input mul-
tiple-output (MIMO) broadcast channel (BC). We consider a mul-
ticell network under universal frequency reuse with multiple mo-
bile stations (MS) per cell. With interference coordination (IC) be-
tween the multiple cells, the base-station (BS) at each cell only
transmits information signals to the MSs within its cell using the
dirty paper coding (DPC) technique, while coordinating the inter-
cell interference (ICI) induced to other cells. The main focus of
this work is to jointly optimize the encoding covariance matrices
across the BSs in order to maximize the network-wide WSR. Since
this optimization problem is shown to be nonconvex, obtaining its
globally optimal solution is highly complicated. To address this
problem,we consider two low-complexity solution approaches with
distributed implementation to obtain at least locally optimal solu-
tions. In the first approach, by applying a successive convex ap-
proximation technique, the original nonconvex problem is decom-
posed into a sequence of simpler problems, which can be solved
optimally and separately at each BS. In the second approach, the
WSR problem is solved via an equivalent problem of weighted sum
mean squared error minimization. Both solution approaches will
unfold the control signaling among the coordinated BSs to allow
their distributed implementation. Simulation results confirm the
convergence of the proposed algorithms, as well as their superior
performances over schemes with linear precoding or no interfer-
ence coordination among the BSs.

Index Terms—Broadcast channel, convex optimization, coor-
dinated multipoint transmission/reception, dirty-paper coding,
interference coordination, MMSE, multicell, multiple-input mul-
tiple-output.

I. INTRODUCTION

I N order to better utilize the spectrum resource and control
the interference, fractional frequency reuse has been widely

adopted in many wireless cellular systems. For a fractional fre-
quency reuse system, adjacent cells are guaranteed to operate
in different frequencies. On the contrary, cells operating on the
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same frequency are sufficiently apart such that inter-cell inter-
ference (ICI) is kept sufficiently low. Thus, in this conventional
multicell system, the ICI is controlled by deploying the fre-
quency reuse pattern and setting the maximum power spectral
density levels at all the base stations (BS). As a result, the inter-
ference management is usually relegated to on a per-cell basis
management, and the ICI is treated as background noise. In a
wireless multicell system with universal frequency reuse, each
BS may utilize all the radio frequency resources. In this case,
the multicell system emulates an interference network where
the management of inter-cell interference is of particular im-
portance and should not be neglected. Mobile stations (MS),
especially the ones in the cell-edge region, often exhibit a high
level of ICI, which shall dramatically degrade their link perfor-
mances. To better control the ICI, the base-stations may jointly
coordinate their downlink transmissions to the MSs. Known as
coordinated multi-point transmission/reception (CoMP), BS co-
ordination has been considered as a key technology to improve
the coverage, throughput, and efficiency of the 3GPP LTE-Ad-
vanced [1].
Depending on the extent of coordination between the BSs,

various CoMPmodes have been proposed in the 3GPP LTE-Ad-
vanced [1]. In the full coordinationmode, user data and channel
state information (CSI) are exchanged between the coordinated
BSs such that the multiple BSs are simultaneously transmitting
data signals to the MSs within the coordinated areas. Appar-
ently, full coordination is the most complex CoMP mode as
it demands a significant amount of signaling to be exchanged
among the BSs via an ideal backhaul [2]. Thus, this highly com-
plex mode may not be suitable to a large scale network. In a
lesser extent of coordination, the interference coordination (IC)
mode allows a BS to transmit the data only to the MSs within its
cell limit [3], [4]. Nonetheless, the ICI are still jointly controlled
between the coordinated BSs through the means of precoding.
By coordinating the ICI, significant power reduction or rate en-
hancement can be realized [3], [5], [6].
Optimizing the precoding designs in an interference network

is a challenging task due to the nonconcavity of the weighted
sum-rate (WSR) function. Different numerical methods for
designing the precoders that maximize this WSR have been
investigated in the literature [7]–[9]. Specifically, the gradient
projection method was applied in [7] to search for a locally
optimal transmit strategy. Successive convex approximation
was applied in [8], [9] to decompose the original nonconvex
problem into a sequence of simpler convex problems, which
can be solved separately at the transmitters. Note that these
works only considered the network with one MS per cell. For
a more general case of multiple MSs per cell, recent works in
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[3], [4] studied the optimal linear precoding to maximize the
WSR with per-BS constraints. Specifically, an iterative algo-
rithm was proposed in [3] to solve the Karush-Kuhn-Tucker
conditions of the non-convex WSR maximization problem.
Another solution approach to the nonconvex WSR maximiza-
tion problem is to transform it into a minimization of the
weighted mean squared error (WMMSE) problem [4], [10],
[11]. The WMMSE problem then can be solved by iteratively
optimizing the weight matrices, the MMSE precoders, and the
MMSE decoders [10]. Thus, by establishing the equivalence
between the WSR maximization problem and the WMMSE
minimization problem, a locally optimal solution to the former
can be found from the solution of the latter.
In this work, we consider a coordinated multicell system in

a general setting with multiple MSs per cell, where each BS or
MS is equipped with multiple transmit antennas. At each cell,
the BS concurrently transmits information signals to its con-
nected MSs, which emulates a multiple-input multiple-output
(MIMO) broadcast (BC) system. The main focus of this work
is to jointly optimize the precoding covariance matrices at the
BSs in order to maximize the network-wide WSR under the IC
mode. While most of the works considered linear precoding at
each BS for the multicell MIMO-BC system [3]–[9], our focus
in this paper is on nonlinear precoding design. Specifically, in
the BC with multiple MSs per cell, each BS utilizes dirty paper
coding (DPC) to encode the data for the MSs within its cell.
It is well-known that DPC is the capacity-achieving multiuser
precoding technique for a single-cell system [12]–[15]. In this
work, we extend the study of DPC onto the multicell system
with interference coordination. Although DPC only remains as
a theoretical benchmark due to its high complexity implemen-
tation, our consideration of DPC potentially allows the multi-
cell network to realize extra performance from the nonlinear
precoding over the linear precoding. The achievable rate by
DPC then can be used as the benchmark for practical nonlinear
precoding techniques, such as Tomlinson-Harashima precoding
(THP) [16] and vector perturbation (VP) [17]. Since the maxi-
mization of WSR in a multicell MIMO-BC with DPC is shown
to be a nonconvex problem, finding its globally optimal solu-
tion is computationally complex. To address this concern, we
consider two low-complexity solution approaches, namely iter-
ative linear approximation (ILA) and WMMSE, to numerically
search for at least locally optimal solutions of the problem.
In the ILA solution approach, the sum-rate function at all

other cells except a particular cell under consideration, is ap-
proximated into a linear interference penalty. Thus, maximizing
the network WSR is approximate to maximizing the BC sum-
rate with DPC at the given cell while minimizing a penalty
term on the ICI generated by its corresponding BS. Although
this per-cell BC problem is yet to be convex, we show that the
problem is equivalent to a counterpart one in the multiple access
channel (MAC) via the so-called BC-MAC duality. Since the
MAC problem is convex and thus optimally solved, the optimal
solution to the BC problem is also obtained by the MAC-BC
transformation [14]. Interestingly, it will be proved that the net-
work WSR is always improved by optimizing the DPC pre-
coders at any given BS. With the ILA algorithm, each BS is re-
quired to iteratively take turn and refine its precoders. We then

prove the monotonic convergence of the ILA algorithm to at
least a local maximum. In addition, we develop a message ex-
change mechanism that allows the proposed algorithm to be im-
plemented in a fully distributed manner.
In the WMMSE solution approach, we devise a version of

the WMMSE algorithm for the multicell MIMO-BC with DPC
precoding. To avoid the confusion with the original WMMSE
algorithm for the case of linear precoding in [4], the newly de-
vised algorithm will be referred to as the DPC-WMMSE al-
gorithm. Similar to the original WMMSE algorithm, we show
that the DPC-WMMSE can obtain a locally optimal solution to
the multicell MIMO-BC WSR maximization problem. In addi-
tion, the DPC-WMMSE can be implemented distributively via
a message exchange mechanism among the coordinated BSs.
Simulation results confirm the convergence analysis of the ILA
and DPC-WMMSE algorithm, and show that the proposed algo-
rithm significantly improves the network WSR, in comparison
with linear precoding or with no IC between the BSs.1

Notations: and denote the transpose and
conjugate transpose (Hermitian operator) of the matrix ,
respectively; denotes the component-wise operation

; means that is a positive semi-def-
inite matrix; , , and denote the trace,
determinant, and rank of the matrix , respectively; and
denotes the optimal value of the variable .

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink transmission of a multicell system
with separate cells operating on the same frequency. At each
cell, a multiple-antenna BS concurrently sends independent data
streams to multiple MSs, each equipped with multiple receive
antennas. For the simplicity in presentation, it is assumed that
the number of antennas at each BS and MS are and , re-
spectively, and the number of MSs per cell is . At a particular
cell, say cell- , the received signal at MS- , denoted as , is
given by

(1)

where is the transmitted vector from the BS-
intended for its connected MS- , models the channel
from BS- to MS- of cell- , and is the zero-mean additive
Gaussian noise vector with the covariance matrix . Since
the multicell system operates on the same frequency channel,
the intended signal from BS- to its MS- is now subject to the
intra-cell interference from the signaling for other co-located
MSs in , as well as the ICI from other cells in

.
Let be the number of data sub-streams for

each MS. The transmit signal vector for MS- in BS- can
be expressed as

(2)

where is the precoding matrix and
represents the information signal vectors. Without loss

1Without IC, the multicell system is said to be in the competitivemode where
each BS is a rational and selfish player.
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of generality, it is assumed that . Denote
as the transmit covariance

matrix intended for MS- of cell- . Let
be the downlink precoder profile of the users at cell- .
Likewise, let de-
note the precoding profile of all cells except cell- . Denote

as the total ICI plus
additive Gaussian noise at MS- of cell- , whose covariance

is defined as

(3)

As the multicell system operates in IC mode, each BS only
attempts to encode and transmit information signals to the MSs
within its cell. In this work, it is assumed that the BS implements
the capacity-achieving multiuser encoding technique, namely
dirty paper coding (DPC) [12], [15], for the downlink transmis-
sions to its connected MSs. At cell- , assuming the encoding
order from user- to user-1, DPC is utilized such that the in-
tended codeword for user- does not see the intra-cell interfer-
ence from user- to user- . Thus, the achievable data rate
at user- of cell- is given by

(4)

Let be the sum-
rate at cell- for its connected MSs. Collectively, the network
WSR is given by , where denotes
the nonnegative weight of cell- . Given as the maximum
transmit power at BS- , the network WSR is maximized by the
following optimization

(5)

It is observed that problem (5) is nonconvex because of the
presence of ’s in the ICI terms ’s with , as well as
the intra-cell interference term in with .

In [18], the sum-rate maximization problem in an interference
channel was shown to be strongly NP-hard (cf. Theorem 1 of
[18]), even in the simplest case (single-carrier, optimizing the
allocated power at the source). Intuitively, problem (5), which
involves precoding designs, power allocation for multiple users
per cells, is also NP-hard. However, to have a complete proof
on this NP-hard problem requires a much more detailed anal-
ysis, which is beyond the scope of our work. Nonetheless, due
to the nonconvexity of the considered problem, obtaining its
globally optimal solution appears to be computationally compli-
cated. It may also require a centralized solver unit to obtain such
a solution. In this case, designing a low-complexity algorithm
with distributed implementation to compute local optimizers be-
comes a more attractive option.

III. THE ITERATIVE LINEAR APPROXIMATION
SOLUTION APPROACH

A. The Iterative Linear Approximation (ILA) Algorithm

This section is to investigate a distributed and fast converging
algorithm to obtain at least a locally optimal solution to the non-
convex problem (5). By formulating problem (5) as a difference
of convex (DC) program [19], [20], we first take the approx-
imation to the nonconcave part of the objective function, cor-
responding to one set of precoders at a particular BS. We then
show that the approximated problem can be solved optimally at
that BS.
Let denote

the WSR of all other cells except cell- . As is not
concave in , we shall take an approximation of into a
linear term. At a given value of , taking the
Taylor expansion of around and retaining the first linear
term, one has

(6)

where is the negative partial derivative of with respect to
, evaluated at , as given in (7) at the bottom of the

page. Note that this partial derivative has the same form with
respect to each , and is positive semi-definite, i.e.,

.
With the other variables fixed as ,

the objective function in problem (5) can be approx-
imated around as

(7)
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.
By omitting the known terms from the objective function, we
examine the optimization problem (5) over the set of variables

by the approximation

(8)

which can be performed solely at cell- . Similarly, one can take
the above approach with other set of variables to approximate
problem (5) into a set of per-cell problems.
Some remarks regarding the optimization problem (8) are

provided as follows:
Remark 1: Problem (8) is similar to the sum-rate maximiza-

tion problem in the BC with DPC, studied in [14], [15], [21],
albeit the presence of the term . Since
is the negative rate of change in the data rate of the adjacent
cells to cell- with respect to , minimizing

is equivalent to maximizing the contribu-
tion of to the data rate of the adjacent cells. In
addition, can be interpreted as a penalty
term charged on ICI generated by BS- . This penalty term
encourages the BS to coordinately design its precoders by con-
trolling its induced ICI to other cells. Should the penalty term
be omitted, the BS would only maximize the downlink capacity
for its connected users. As a result, the precoding design in
this multicell system is a noncooperative game between the
BSs, where each BS acts as a rational and selfish player. This
multicell precoding game is similar to the game studied in [22]
for the case of 1 user per cell. It is noted that the study of the
multicell precoding game with DPC for the case of multiple
users per cell is beyond the scope of this paper. Nonetheless,
we shall present some numerical results for this noncooperative
design in comparison to the considered coordinated design.
Remark 2: It is worth mentioning that [23], [24] studied the

BC sum-rate maximization with strict constraints on the induced
ICI . The considered problem (8) is different
from the studies in [23], [24], since we attempt to minimize the
ICI penalty term with a sum-power constraint on the transmit
covariances.
Remark 3: Although problem (8) is not a convex optimiza-

tion problem, its resemblance to the BC’s sum-rate maximiza-
tion problem enables its transformation into a dual MAC maxi-
mization problem via the so-called BC-MAC duality. In a con-
ventional multiuser MIMO system with the objective of maxi-
mizing the system sum-rate, BC-MAC duality was investigated
for the case of a single sum-power constraint [14], [15], [25], a
set of linear power constraints [15], [26], and multiple general
transmit covariance constraints [23]. In the following, it will
be shown shortly that the BC-MAC duality also holds for the
multiuser MIMO system with the objective of maximizing the
system sum-rate while minimizing the penalty term imposed on
the transmit covariances. As a result, the nonconvex problem

(8) can be solved optimally via the convex MAC problem by
utilizing this BC-MAC duality.
To this end, we consider solving the optimization (8)

under two cases: without and with the power constraint
. Since the optimization is performed

at a particular BS, without loss of generality, the subscript
indicating the BS and the variables annexed to the
user data rates are dropped for the simplicity in presentation.
1) Case 1: Without the Power Constraint: Without the sum-

power constraint , the optimization (8) can
be stated as

(9)

In the following, we are interested in obtaining the glob-
ally optimal solution to problem (9). Should

meet the sum-power constraint in (8), i.e.,
, they must be the global maximizer of

problem (8) as well.
By changing the variables and denoting

, the data-rate to user- can be rewritten
as

(10)

Thus, problem (9) is equivalent to

(11)

In order to solve the nonconvex problem (11), we utilize the
known BC-MAC duality property as follows. Consider a dual
MAC with -antenna MSs transmitting to an -antenna
BS, where the uplink channel from user- to the BS is assumed
to be and background noise at the BS is AWGN with unit
variance. It is assumed that the BS employs successive interfer-
ence cancelation (SIC) to decode the signals from the MSs.
With the decoding order from user-1 to user- , SIC ensures that
the received signal from user- is not interfered by the signals
from user-1 to user- . Denote as the uplink precoding
covariance matrix at user- , the achievable data-rate for user-
in the MAC is thus given by

(12)

The key relationship between the BC and its dual MAC is
presented in the following theorem.2

2The duality between the BC with a general linear constraint on
and the MAC was established in [23] using a tech-

nique called SINR duality. In this work, we apply a simple change of variables
to show this duality.
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Theorem 1: [14] For a given set of downlink covariance
matrices in the BC, it is always possible to find
a set of uplink covariance matrices such that

and through
the BC-MAC transformation. Vice versa, for a given set of
uplink covariance matrices , it is always possible
to find a set of downlink covariances such that

and through
the MAC-BC transformation.
From Theorem 1, instead of solving the nonconvex

problem(8), one may consider the following optimization
problem

(13)

which can be interpreted as a MAC sum-rate maximization with
a penalty term on the transmit power at the MSs. Certainly,
if the set is optimal in (13), it is possible to find
the set that is optimal in (11) with the same max-
imum value. By contradiction, if were not optimal,
the BC-MAC transformation would ensure that
would not be optimal. Thus, the BC-MAC duality also holds
for the considered problem with the objective of maximizing
the sum-rate while minimizing the penalty term imposed on the
transmit covariances. Consequently, by finding the optimal so-
lution of problem (13), one shall obtain the optimal solution of
problem(11) as well.
Note that the objective function in (13) can be simplified as

(14)

which is concave in . Consequently, problem (13)
is convex. In addition, the inherently decoupled constraints for
each variable matrix allows the sequential maximization
of the objective function over each variable matrix [27]. More
specifically, MS- optimizes its covariance matrix by per-
forming

(15)
while treating the signal from other MSs as noise. Using the
eigen-decomposition

, the optimal solution can be obtained in closed-form
as . Each MS- can iteratively
update its covariance matrix while keeping other covariance
matrices fixed [27]. Note that this procedure always improves
the objective function (14).
Since the objective function (14) is a subtraction of a log

function of to a linear function of , it
must have an upper bound. As a result, the sequential optimiza-
tion of (15) over is guaranteed to monotonically

converge to the optimal solution of problem (13).
Consequently, one can obtain the optimal solution
to problem (11) from by the MAC-BC transfor-
mation [14]. The optimal solution of (9) is then given by

. As is the globally optimal solu-
tion to the MAC problem (13), must be the glob-
ally optimal solution to the BC problem (9). It is then straight-
forward to verify whether meets the sum-power
constraint . If it is not, we proceed to solve
the optimization problem (8) in the remaining case, where the
sum-power constraint is strictly imposed.
2) Case 2: With the Power Constraint: Consider the La-

grangian of original BC problem (8) as follows:

(16)
where is the Lagrangian multiplier associated with the
power constraint . The Lagrangian dual
function is then given by

(17)

and the dual problem is defined as

(18)

We first focus on the maximization of the Lagrangian dual
function for a given , which can be stated as

(19)

Clearly, problem (19) is similar to problem(9). Thus, one can
obtain the globally optimal solution to problem(19) by adopting
the approach in solving problem(9). The difference is in the
change of variables where and

. Then, by solving the dual MAC
problem (13) and performing the MAC-BC transformation one
can obtain the globally optimal solution . Subse-
quently, the optimal solution to the Lagrangian dual problem
(19) is given by .
It remains to minimize subject to the constraint

in (18). By the Lagrangian duality theory, is convex in
[28]. However, may not be differentiable. Nonetheless,
it is possible to find the subgradient of . Suppose that at
, is the optimal solution of (19). For any given

, one has

(20)
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Thus, can be chosen as the subgradient
of . The subgradient search direction suggests to increase
if or decrease otherwise. Since is

searched in a one-dimensional space, the bisection method can
be efficiently applied to find the optimal . We summarize the
proposed algorithm to solve the nonconvex problem (8) in Al-
gorithm 1. The optimality of the proposed algorithm is proved
in the following theorem.

Algorithm 1 Iterative Algorithm for the MIMO-BC Sumrate
Maximization with a Penalty Term

1For a given do

2Change the variables as
and ;

3Solve the equivalent uplink MAC problem

by;

4repeat

5for do

6Perform the eigen-decomposition
;

7Update ;

8end

9until convergence to ;

10Compute from by the
MAC-BC transformation;

11Compute
;

12end

13case (without the power constraint)

14Follow step 1 to 12 to obtain ;

15if then stop the algorithm;

16case (with the power constraint)

17Set and large;

18repeat

19 ;

20Follow step 1 to 12 to obtain ;

21if then set
;otherwise, set

22until or is small
enough;

Theorem 2: The proposed Algorithm 1 achieves the globally
optimal solution to problem(8).

Proof: Per the proposed Algorithm 1, if the obtained solu-
tion set for the case meets the power con-
straint , then is the globally
optimal solution to problem (8). This is due to the equivalence
between the BC problem(11) and the MAC problem(13).
We now focus on the case . Suppose that the obtained

solution from the proposed algorithm is not glob-
ally optimal, and there is another solution set sat-
isfying the conditions:
(i)
(ii)

.
Since globally maximizes the Lagrangian as

given in problem (19), one has

(21)

Thus, condition (ii) then guarantees

(22)

Since Algorithm 1 guarantees for the case
, one has

(23)

which contradicts condition (i). Thus, the proof for this theorem
follows by contradiction.
As proved in Theorem 1, the optimization(8) performed at

cell- can be effectively and optimally solved. For the network
WSR maximization problem (5), the proposed ILA algorithm
requires each cell- , to iteratively update the ma-
trix and solve its approximated optimization problem (8).
Theorem 3: The optimization (8) performed at any given

BS- always improves the network WSR .
Proof: Please refer to Appendix A.

As indicated in Theorem 3, the network WSR is strictly non-
decreasing after an update of the covariance matrices at any
given BS. More specifically, at a current iteration where

, at any given BS, say BS- , the update to
always improves the network WSR. This iterative procedure
can be performed sequentially across all BSs until the whole
system reaches to a stable state. Since the network sum-rate is
upper-bounded, the Gauss-Seidel (sequential) iterative update
is guaranteed to converge to at least a local maximum. We sum-
marize the ILA algorithm for the multicell MIMO-BC in Algo-
rithm 2. In Algorithm 2, we refer the iterative procedure 2–8
as an outer-loop iteration and refer the update at a particular
BS using the iterative Algorithm 1 in step 6 as an inner-loop
iteration. It is worth mentioning that certain optimization steps
in Algorithm 2 can be assigned and executed in a distributed
manner across the coordinated BSs. We address the distributed
implementation of the ILA algorithm in Section III-B.
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Algorithm 2 ILA Algorithm for the Multicell MIMO-BC with
DPC

1Initialize , such that ;

2repeat

3 ;

4for do

5At the BS, update the matrix as given in (7);

6Update by executing Algorithm
1;

7end

8until convergence;

B. Distributed Implementation of the Proposed ILA Algorithm

In order to implement the proposed ILA algorithm distribu-
tively, the following assumptions are taken in consideration:
• Assumption 1: Each BS, say BS- , knows the channel ma-
trices ’s to all the MSs in the network. This assump-
tion allows the BS to control its induced ICI to other cells.

• Assumption 2: The coordinated BSs have reliable backhaul
links to exchange control information among themselves.

• Assumption 3: The channels are in block-fading or vary
sufficiently slow such that they can be considered fixed
during the optimization process.

It is noted that the optimization (8) can be performed distribu-
tively at the corresponding BS with local information. Thus, it
remains to show that the factors ’s can also be computed in
a distributed manner through a message exchange mechanism
among the BSs. It is observed from (7) that in order to compute
, BS- has to possess the channels ’s to all the MSs in

the other cells, as stated in Assumption 1. Although (7) indicates
the dependence of on the channels at other cells, the
knowledge of is not necessarily required at BS- . Define

(24)

where . Then, it can be
deduced from (7) that

(25)

As stated in Remark 1, can be interpreted
as the penalty term charged on the ICI generated by BS- . The
following decomposition

(26)

shows that is essentially the price charged on the ICI gen-
erated to the particular MS- at cell- . Interestingly, the pricing

matrix can be computed using only local measurements at
the corresponding MS- at cell- . Note that is the total in-
terference plus noise and is the total signal,
interference plus noise, pertaining to MS- of cell- , which can
be locally measured by theMS at the instance . After
computing the pricing matrix , theMS can feed back this pa-
rameter to its connected BS. These pricing matrices ’s are
then the messages to be exchanged among the BSs. Any given
BS, say BS- , after acquiring the pricingmatrices , can com-
pute using (25).
Remark 4: It is proved in Theorem 3 that the optimization

performed at a given BS always improves the network WSR,
which leads to the convergence of the ILA algorithm with the
Gauss-Seidel update. However, at each iteration, all the MSs
are required to compute their pricing matrices ’s and ex-
change them within the whole network before the precoding
update. As a result, the Gauss-Seidel update may demand a lot
of computation at the MSs and message exchanges in the net-
work. To reduce the number of iterations, the proposed ILA al-
gorithm can be also implemented by the Jacobi (simultaneous)
iterative update. Specifically, at each iteration, all the BSs simul-
taneously update their covariance matrices. Through numerous
simulations, we observe a much faster convergence rate by the
Jacobi update than that by the Gauss-Seidel update. Although
the convergence of the ILA algorithm with the Jacobi update is
not analytically proved, we have not observed any instance in
simulations that the Jacobi update fails to converge. However,
there is a reason to believe that the Jacobi update may not al-
ways converge. That is the case when the Jacobi update jumps
backward and forward between multiple peaks of the objective
function. In this case, the Jacobi will not converge to any par-
ticular local maximum. The Gauss-Seidel update can avoid this
behavior because it forces the optimization to converge mono-
tonically once it gets closer to a local maximum.

IV. THE WEIGHTED MINIMUM MEAN SQUARED ERROR
ALGORITHM SOLUTION APPROACH

A. The DPC Weighted Minimum Mean Squared Error
(DPC-WMMSE) Algorithm

In Section III, we have examined a linear convex approxima-
tion technique to solve the nonconvex optimization problem(5)
by successively improving the downlink covariance matrices
at the BSs. In this section, we examine the second approach
to solve this nonconvex problem by transforming it into a ma-
trix-weighted sum-MSE minimization problem. Following the
approach proposed in [4], [10], we develop a WMMSE-based
algorithm for the multicell MIMO-BC with DPC. The newly
developed algorithm will be referred to as the DPC-WMMSE
algorithm, in order to avoid the confusion with the original
WMMSE algorithm for the case of linear precoding in [4].
In the course of developing the DPC-WMMSE algorithm, we
obtain new results on the designs of the transmit beamformers,
the receive beamformers, and the weight matrices, compared
to the WMMSE algorithm [4]. Unlike the ILA algorithm,
which tries to optimize over the transmit covariances ’s, the
optimization in the DPC-WMMSE algorithm is executed over
the transmit beamforming matrix .
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With ’s being the variables, the optimization problem (5)
can be restated as

(27)

where the achievable rate , given in (4), can be restated in
(28) at the bottom of the page.
Since DPC with the encoding order from MS- to MS-1 is

applied at each BS, MS- receives the signal from BS- as if
there was no intra-cell interference from user- to user- .
Thus, while treating the ICI as noise, the estimated signal for
user- in BS- is given by

(29)

where is the receive beamformer at MS- . Let be the
expected MSE matrix of MS- , which is defined as

(30)

Given the transmit beamforming matrices ’s, the optimal
receive beamformer to minimize the MSE is the Wiener
filter, i.e., MMSE receiver

(31)

As a result, the achieved minimum MSE matrix for user- in
cell- is then given by

(32)

Similar to the case of linear precoding, the relationship be-
tween the data rate given in (28) and the MMSE matrix given
in(32) with DPC can be expressed as

(33)

Due to this relationship, the equivalence between theWSRmax-
imization problem in the multicell MIMO-BC and the matrix-
weighted sum-MSE minimization can be established in the fol-
lowing theorem.
Theorem 4: The multicell MIMO-BC WSR maximization

problem (27) is equivalent to the following matrix weighted
sum-MSE minimization

(34)

where is the weight matrix for MS- at cell- . In
particular, the globally optimal solutions are identical
for the two problems.

Proof: The proof for this theorem is similar to that in [4],
[10] for the case of linear precoding. Thus, we omit the details
for brevity.
Since solving problem(27) is equivalent to solving

problem(34), we now proceed to numerically obtain the solution
to the latter problem. Although the objective function in(34) is
not jointly convex over the whole set of variables, it is convex
in each set of the variables . Thus, it is possible
to find a locally optimal solution of problem (34) by alternately
optimizing one set of the variables while fixing the other two
until convergence. First, withfixed transmit beamformers ’s,
the receive beamformers ’s are given as in (31). Second,
fixing the transmit and receive beamformers ’s and ’s, the
weighted-matrices ’s are updated in a closed form solution

(35)

(28)
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Finally, by decomposing the objective function in (34), the
transmit beamformers ’s are updated by solving decoupled
optimization problems across the BSs. For example, the opti-
mization performed at BS- is given in (36) at the bottom of
the page. This optimization then can be carried out simultane-
ously and separately at BS- . Since problem (36) is a convex
quadratic program, its optimal solution can be in a closed-form
solution as given in (37) at the bottom of the page. Herein, the
optimal Lagrangian multiplier associated with the power
constraint can be easily found by the bisection method.
We summarize the DPC-WMMSE algorithm for the multi-

cell MIMO-BC as in Algorithm 3. In this algorithm, in each
outer-loop iteration, each set of variables (i.e., the receive beam-
forming matrices ’s, the weight matrices ’s, and the
transmit beamforming matrices ’s) can be updated simul-
taneously across the cells. Compared to the ILA algorithm,
the DPC-WMMSE algorithm does not require any inner-loop

Algorithm 3 DPC-WMMSE Algorithm for the Multicell
MIMO-BC with DPC

1Initialize , such that ;

2repeat

3Set ;

4Simultaneously update across cells;

5for do

6At the MSs, update the receive beamformers and
weight matrices;

7for do

8Update as in (31);

9Update as in (35);

10end

11At the BS, update the transmit matrices
as in (37);

12end

13until convergence;

iteration or the BC-MAC transformations because of the direct
update of the variables , , and . Compared to the
original WMMSE algorithm with linear precoding in [4], [10],
the DPC-WMMSE algorithm requires some modifications to
the transmit beamforming matrices ’s and the receive beam-
forming matrices to accommodate the DPC.
In the DPC-WMMSE algorithm, the iterative process is

executed by alternatively optimizing over each set of vari-
ables in ’s, ’s, and ’s. Since the constraint set
of problem (34) is decoupled for each set of variables, the
alternative optimization over ’s, ’s, and ’s must
decrease the objective function monotonically [29]. Moreover,
the cost function in (34) is lower-bounded due to the power
constraints on ’s. Thus, the DPC-WMMSE must converge
to at least a local minimum of the cost func-
tion (34). Note that the cost function of the original sum-rate
maximization problem(27) does not necessarily improve after
each iteration. However, given as a local
minimizer of problem (34) obtained from the DPC-WMMSE
algorithm, is also a local optimizer of the original problem
(27). This observation was proved for the WMMSE algorithm
in case of linear precoding [4]. The same proof can be ap-
plied here for the DPC-WMMSE algorithm with the DPC
consideration.
As shown in [4], the WMMSE algorithm can be imple-

mented in distributed manner. Under the assumptions given in
Section III-B, distributed implementation to the DPC-WMMSE
algorithm is also possible with same message exchange mech-
anism as in the WMMSE algorithm.

V. SIMULATION RESULTS

This section presents some numerical evaluations on the
achievable downlink sum-rate of a multicell system with dif-
ferent levels of coordination and on the convergence behavior
of the proposed algorithms. We compare the sum-rate between
3 schemes: (i) the interference coordinationmode with DPC ob-
tained from the ILA and DPC-WMMSE algorithms (with equal
weights ), (ii) the competitivemode where each
BS selfishly maximizes the sum-rate for its connected MSs
using DPC, and (iii) the interference coordination mode with
linear precoding obtained from the WMMSE algorithm in [4].

(36)

(37)
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Fig. 1. Amulticell systemwith 3 cells and 3MSs per cell. EachMS is randomly
located at a distance from its connected BS.

Fig. 2. Network sum-rate versus the transmit power to AWGN ratio for
. Each algorithm is run until full convergence with the number of iterations

capped at 500.

Unless stated otherwise, the ILA scheme is implemented with
the Gauss-Seidel update due to its guaranteed convergence.
We consider a generic 3-cell system with 3 MSs per cell, as
illustrated in Fig. 1. The numbers of antennas at each BS and
each MS are assumed to be 4 and 2, respectively. The BSs are
located at a normalized distance of 2 and the MSs are randomly
located on a circle at distance from its connected BS. The
channels from a BS to a MS are generated from i.i.d. Gaussian
random variables using the path-loss model with the path-loss
exponent of 3 and the reference distance of 1 corresponding to
MSs at the cell edge. The variance of the small-scale fading
(shadowing) is set at 0 dB. The additive Gaussian noise at
each MS is assumed to be white with the covariance matrix

and is set at 0.01. The transmit power at each
BS is constrained at 1 W such that the average signal to AWGN
ratio at the cell edge is given by dB, unless stated
otherwise.
Fig. 2 illustrates the network sum-rate versus the transmit

power to AWGN ratio (with same power at each BS)
for . As is varied, 10,000 channel realizations at

Fig. 3. Network sum-rate versus the intra-cell BS-MS distance . Each algo-
rithm is run until full convergence with the number of iterations capped at 500.

each value of are used to achieve the average network
sum-rate. Note that the plotted results in the figure are obtained
from the full convergence of each algorithm. However, we do
set a upper limit on the number of iterations for each algorithm
at 500 for practical implementation purposes. Herein, we de-
fine an iteration as an instance of message exchange between
the BSs. With the ILA algorithm, due to the similar sum-rates
obtained at full convergence by the Gauss-Seidel and Jacobi
updates, only the results from the former type of update are dis-
played. It is observed from Fig. 2 that increasing the transmit
power at each BS shall increase the network sum-rate for all
3 schemes. However, at the high region the sum-rate
obtained from the DPC competition scheme becomes satu-
rated. This is due to the reason that the competitive design
does not attempt to control ICI, and thus increases the ICI
relatively with the transmit power. In this case, it is more ap-
pealing to implement the coordinated designs obtained by the
ILA, DPC-WMMSE, or WMMSE algorithm. It can also be
seen from the figure that the non-linear precoding design with
DPC (by the ILA and DPC-WMMSE algorithms) can extract
extra performance from the multicell network over the linear
precoding design (by the WMMSE algorithm). Interestingly,
the ILA algorithm outperforms the DPC-WMMSE algorithm
at high , corresponding to the high SINR region. This
appears to be due to the much slower convergence rate of the
DPC-WMMSE algorithm at high SINR region. As noted in
a recent work [30], at high SINR, the WMMSE-based solu-
tion approach does not sufficiently suppress small interference
sources. Thus, this approach only provides small sum-rate im-
provement after each iteration, compared to the ILA approach.
Fig. 3 illustrates the total network sum-rate versus the in-

tracell MS-BS distance obtained from the 3 schemes with
. All other parameters in the simulation setup

this figure are the same as those to obtain the results in
Fig. 2. Note that the effect of ICI is more apparent with in-
creasing due to the decreasing gain of intra-cell channels
and the increasing gain of inter-cell channels. Thus, the net-
work sum-rate is reduced with increasing , as observed in
the figure for all the schemes. Out of the 3 schemes, the co-
ordination mode with DPC always show a superior sum-rate



NGUYEN AND LE-NGOC: MULTICELL MIMO BROADCAST CHANNEL 1511

Fig. 4. Convergence of the proposed ILA and DPC-WMMSE algorithm to
maximize the network sum-rate with interference coordination.

performance, since it takes advantages of both the nonlinear
precoding in DPC and the interference coordination. At the
low-ICI region, i.e., high SINR, the coordination mode with
DPC with the ILA and DPC-WMMSE algorithms significantly
outperforms the WMMSE algorithm due to the use of DPC
over linear precoding. On the other hand, at the high-ICI re-
gion, by implementing the IC with the proposed algorithms,
one can significantly improve the network sum-rate over the
competitive design. In the coordination mode with DPC, it
can be observed that the sum-rates obtained by the ILA and
DPC-WMMSE algorithms closely match over whole range
of . However, at low , the ILA algorithm outperforms the
DPC-WMMSE algorithm. This behavior is probably due to
the reason that each BS focuses more on maximizing its own
sum-rate than limiting the ICI at the low-ICI region. In this
case, Algorithm 1 utilized in the ILA algorithm can obtain the
optimal solution to the per-cell sum-rate maximization prob-
lems, whereas the DPC-WMMSE obtains the sum-rate from
the transformed WMMSE problem. Similar to the observation
in Fig. 2, the slower convergence of the WMMSE-based algo-
rithm at high SINR [30] is another reason for this performance
gap.
It is to be noted that the ILA, DPC-WMMSE, WMMSE al-

gorithms, and the competitive design may require several iter-
ations to fully converge. For a specific channel realization with

, we illustrate the convergence behavior of the pro-
posed ILA and DPC-WMMSE algorithms in Fig. 4. After each
iteration, the network sum-rates obtained from the algorithms
are plotted. In general, the ILA algorithm converges faster
than the DPC-WMMSE algorithm. As observed from Fig. 4,
once a BS updates its covariance matrices, the overall network
sum-rates are always improved by the ILA algorithm with the
Gauss-Seidel update and the DPC-WMMSE algorithm. This
behavior agrees with our analysis on the convergence of the
algorithms. Interestingly, the ILA algorithm also experiences
the monotonic convergence with the Jacobi update. Both the
ILA and DPC-WMMSE algorithms eventually converge to a
network sum-rate that is superior than the one obtained by the
competitive design.

Fig. 5. The convergence of Algorithm 1 to solve Problem (8).

With the same sample channel realization as in Figs. 4, 5 dis-
plays the convergence of Algorithm 1 in maximizing the BC
sum-rate with a penalty term, i.e., problem(8). After each up-
date of the dual variable , the evolutions of the sum-rate and
the transmit power at BS-1 are plotted in the figure. As can be
observed from the figure, the algorithm converges very fast in
a few iterations. Due to the penalty term, BS-1 needs to bal-
ance its achievable sum-rate with the ICI induced to cell-2 and
. Thus, its sum-rate is undoubtedly reduced, compared to the

one obtained in a conventional BC without the penalty term.
Nonetheless, under the IC mode, each BS adopts a less selfish
strategy to improve the overall network sum-rate, as shown in
Fig. 4.

VI. CONCLUSION

This work examined the problem of network WSR max-
imization in the multicell MIMO-BC with DPC. Under the
interference coordination mode, the network sum-rate maxi-
mization problem was shown to be nonconvex. This work then
considered two low-complexity solution approaches, namely
ILA and DPC-WMMSE to search for locally optimal solu-
tions. In the first approach, successive convex approximation
technique was utilized to transform the problem into multiple
per-cell problems, which are then optimized distributively at
each BS. In particular, each BS attempted to maximize the
BC sum-rate to its connected BS with a penalty term on its
induced ICI to other cells. A distributed and fast converging
algorithm was then proposed to efficiently find a locally op-
timal solution to the network WSR maximization problem. In
the second approach, by establishing the equivalence between
the maximization of the WSR and the minimization of the
weighted MSE, the WSR problem was locally optimized by
alternatively optimizing over the weight matrices and MMSE
decoders at the MSs and the MMSE precoders at the BSs. As
the proposed algorithms allow the multicell to take advantage
of both DPC and coordinating the ICI, they show a significant
improvement in the network sum-rate compared to competi-
tive design and the linear precoding.
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APPENDIX
PROOF TO THEOREM 3

Suppose that was obtained from the pre-
vious iteration, and is the optimal
solution after the current iteration. Note that is
a convex function with respect to

[7], [9]. Thus, the first-order condition
of the convex function [28] dictates that

(38)

with being defined in (7) at .
After one Gauss-Seidel iteration, the network WSR is up-

dated such that

where the first inequality is due to the one in (38), and the
second inequality is due to being the optimal solution of
problem (8).
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