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Abstract

In a multicell system, universal frequency reuse can be employed in a network of neigh-

boring cells for higher spectral efficiency. However, universal frequency reuse comes at the

price of severe inter-cell interference (ICI), especially at cell-edge mobile stations (MS),

which may effectively impair the overall system performance. To actively deal with the

ICI, the emerging wireless communication standard advocates the concept of interference-

aware multicell coordination. Known as coordinated multipoint transmission/reception

(CoMP), the new paradigm allows the multicell system to actively control and even take

advantage of the ICI. The objective of this research is to study the precoding perspectives

in the multiuser multicell system with CoMP. Specifically, this research examines various

precoding techniques and develops low-complexity and distributed algorithms in designing

optimal precoders that either minimize the transmit power or maximize the sum-rate of

the CoMP systems. In addition, this research brings new perspectives and understanding

to the CoMP system where the interactions among the coordinated BSs are characterized

under two operating modes: interference aware (IA) and interference coordination (IC).

Under the IA mode, the multicell system is said to be in competition where each BS

selfishly adapts its precoding strategies accordingly to the ICI. Naturally, the IA mode

represents a strategic noncooperative game (SNG) with the BSs being the rational players,

who try to maximize a certain utility for their connected MSs. This work characterizes

the SNG played among the BSs by examining the existence and uniqueness of a stable

operating point of the system, which is corresponding to a Nash equilibrium (NE) of the

multicell game. The convergence to the NE and its efficiency are then thoroughly analyzed.

Under the IC mode, the multicell systems are said to be in coordination where the

transmissions from the BSs are coordinated to jointly maximize the performance gain of

CoMP. Optimality and distributed implementation are key considerations for the precoding

designs under the IC mode. In this work, we propose multicell precoding designs that

jointly maximize the weighted sum-rate (WSR) of the coordinated multicell system. Due

to the nonconvexity of the WSR optimization problems, we focus on the development of

low-complexity convex approximation techniques to decompose them into a sequence of

simpler convex problems, which can be solved distributively with local processing at each

coordinated cell. Simulation results show significant performance improvements in terms

of transmit power and achievable sum-rate by the IC mode over the IA mode.
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Sommaire

Dans un système multicellulaire, la réutilisation universelle des fréquences peut être utilisée

dans un réseau de cellules voisines pour une efficacité spectrale supérieure. Cependant, la

réutilisation universelle des fréquences provoque de l’interférence intercellulaire (ICI) sévère,

qui peuvent nuire à la performance globale du système, en particulier dans les stations mo-

biles (MS) qui se trouvent dans la périphérie de la cellule. Pour contrer activement l’ICI,

la norme de communication sans fil émergente préconise le concept de coordination mul-

ticellulaire informée d’interférence. Connu comme coordonnée de transmission/réception

multipoint (CoMP), ce nouveau paradigme permet au système multicellulaire de contrôler

activement et même de profiter de l’ICI. L’objectif de cette recherche est d’étudier les

méthodes de précodage dans le système multicellulaire multiutilisateur avec CoMP. Plus

précisément, cette étude examine les diverses techniques de précodage et développe des

algorithmes peu complexes et distribués afin de concevoir des précodeurs optimaux qui

minimisent soit la puissance d’émission ou maximisent le débit cumulé des systèmes CoMP.

De plus, cette recherche apporte des perspectives et des connaissances nouvelles pour le

système CoMP où les interactions entre les stations de base coordonnées sont caractérisées

en deux modes de fonctionnement: le mode informé d’interférence (IA) et le mode coordi-

nation d’interférence (IC).

Dans le mode IA, le système multicellulaire est en état de compétition puisque chaque

BS adapte égöıstement ses stratégies de précodage en conséquence de l’ICI. Naturellement,

le mode IA représente un jeu non coopératif stratégique (SNG) dans lequel les stations de

base sont les acteurs rationnels, qui tentent de maximiser une certaine utilité pour leurs MSs

connectées. Ce mémoire caractérise le SNG disputé entre les stations de base en examinant

l’existence et l’unicité d’un point de fonctionnement stable du système, qui correspond à un

équilibre de Nash (NE) du jeu multicellulaire. La convergence vers le NE et son efficacité

sont ensuite soigneusement analyées.

Dans le mode IC, les systèmes multicellulaires sont censés être en coordination puisque

les transmissions de la BS sont coordonnées afin de maximiser conjointement le gain

de performance de CoMP. L’optimalité et la mise en oeuvre décentralisée sont des con-

sidérations fondamentales pour la conception de précodages sous le mode IC. Dans ce

mémoire, nous proposons des conceptions de précodage multicellulaires qui maximisent

conjointement la somme pondérée du débit (WSR) du système multicellulaire coordonné.
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En raison de la non-convexité des problèmes d’optimisation WSR, nous nous concentrons

sur le développement de techniques d’approximation convexes à faible complexité pour les

décomposer en une série de problèmes convexes simples, qui peuvent être résolus de façon

distributive avec la transformation locale au niveau de chaque cellule coordonnée. Les

résultats de simulation montrent une amélioration significative des performances en termes

de puissance d’émission et de somme des débits réalisables par le mode IC sur le mode IA.
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de recherche du Québec - Nature et technologies (FRQNT) Doctoral Award for the gener-

ous financial support to my study at McGill University. I would also like to acknowledge

the financial support received from the Natural Sciences and Engineering Research Council

of Canada (NSERC) Discovery Grant, the NSERC Strategic Projects Grant, the NSERC

Collaborative Research and Development Grant with InterDigital, Ltée, Canada.



vi

Contents

1 Introduction 1

1.1 Interference Management in Wireless Cellular Networks . . . . . . . . . . . 1

1.2 Coordinated Multipoint Transmission/Reception (CoMP) . . . . . . . . . . 4

1.3 Technical Challenges in Precoding Designs for a CoMP System . . . . . . . 5

1.4 Thesis Contributions and Organization . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 11

2.1 Precoding Designs in a MIMO Single-cell System . . . . . . . . . . . . . . 11

2.1.1 Downlink Beamforming for Power Minimization . . . . . . . . . . . 11

2.1.2 Uplink Precoding on the Multiple-Access Channel . . . . . . . . . . 12

2.1.3 Downlink Precoding on the Broadcast Channel . . . . . . . . . . . 15

2.2 Precoding Designs in a MIMO Multicell System with CoMP . . . . . . . . 18

2.2.1 Interference Aware . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Interference Coordination . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Multiuser Downlink Beamforming in Multicell Wireless Systems 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The Multicell Downlink Beamforming Game . . . . . . . . . . . . . . . . . 29

3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 The Best Response Strategy . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 A Sufficient Condition for the Existence and Uniqueness of the NE 35

3.3.4 The Necessary Condition for the Existence and Uniqueness of the NE 37

3.4 A Comparison to the Coordinated Design . . . . . . . . . . . . . . . . . . . 38



Contents vii

3.5 The Multicell Downlink Beamforming Game with Pricing . . . . . . . . . . 42

3.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Existence and Uniqueness of the Nash Equilibrium . . . . . . . . . 44

3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Block-Diagonalization Precoding in Multiuser Multicell MIMO Systems 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 The Multicell Block-Diagonalization Precoding - Competitive Design . . . 61

4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Characterization of the BD Precoding Game’s Nash Equilibrium . . 62

4.4 The Multicell Block-Diagonalization Precoding - Coordinated Design . . . 68

4.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 The Iterative Linear Approximation (ILA) Solution Approach . . . 69

4.4.3 Convergence of the ILA Algorithm and its Distributed Implementation 72

4.5 Multicell BD-DPC Precoding: Competition and Coordination . . . . . . . 74

4.5.1 BD-DPC Precoding on a Per-cell Basis . . . . . . . . . . . . . . . . 74

4.5.2 The Multicell BD-DPC Precoding - Competitive Design . . . . . . 74

4.5.3 The Multicell BD-DPC Precoding - Coordinated Design . . . . . . 76

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Sum-rate Maximization in the Multicell MIMO-MAC with IC 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . 86

5.3 The ILA Solution Approach for the Multicell MIMO-MAC . . . . . . . . . 89

5.3.1 The ILA Algorithm for the Multicell MIMO-MAC . . . . . . . . . . 89

5.3.2 Distributed Implementation of the Proposed ILA Algorithm . . . . 95

5.4 The WMMSE Solution Approach for the Multicell MIMO-MAC . . . . . . 96

5.4.1 The WMMSE Algorithm for the Multicell MIMO-MAC . . . . . . . 96

5.4.2 Distributed Implementation of the Proposed WMMSE Algorithm . 103

5.5 Complexity of the Proposed Algorithms . . . . . . . . . . . . . . . . . . . . 103



viii Contents

5.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Sum-rate Maximization in the Multicell MIMO-BC with IC 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . 115

6.3 The ILA Solution Approach for the Multicell MIMO-BC . . . . . . . . . . 117

6.3.1 The ILA Algorithm for the Multicell MIMO-BC . . . . . . . . . . . 117

6.3.2 Distributed Implementation of the Proposed ILA Algorithm . . . . 126

6.4 The WMMSE Solution Approach for the Multicell MIMO-BC . . . . . . . 128

6.4.1 The DPC-WMMSE Algorithm for the Multicell MIMO-BC . . . . . 128

6.4.2 Distributed Implementation of the DPC-WMMSE Algorithm . . . . 132

6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Conclusion and Future Works 140

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Potential Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Dirty-Paper Coding 143

A.1 The Theory of Dirty-Paper Coding . . . . . . . . . . . . . . . . . . . . . . 143

A.2 Dirty-Paper Coding in a Multiuser Downlink System . . . . . . . . . . . . 144

B A Brief Overview of Game Theory 145

C Vector Norms, Matrix Norms, and Contraction Mapping 147

C.1 Vector Norms and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . 147

C.2 Contraction Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.2.1 Contraction Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.2.2 Contraction Over Cartesian Product Sets . . . . . . . . . . . . . . . 148

References 151



ix

List of Figures

1.1 Example of a fractional frequency reuse multicell network with a reuse factor

of 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example of a multicell network with universal frequency reuse. . . . . . . . 3

3.1 An example of a multicell system with 3 base-stations and 2 users per cell. 27

3.2 Power consumption in two cells: competitive design vs. coordinated design. 43

3.3 A multicell system configuration with 3 cells, 2 users per cell. Of the two

users at each cell, one stays close to the borders with other cells, one is far

away. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Probability of existence of a stable operating point versus d by evaluating

conditions (C) and (C1) and numerically examining the convergence of game

G, the coordinated design, and game G ′ to meet the target SINRs: γqi = 10

dB (dashed lines) and γqi = 0 dB (solid lines). . . . . . . . . . . . . . . . 51

3.5 Average total transmit power versus d of the competitive design, the coordi-

nated design, and the competitive design with pricing consideration to meet

the target SINRs: γqi = 10 dB (dashed lines) and γqi = 0 dB (solid lines). . 52

3.6 A converging example of the downlink beamforming games G and G ′ in a

multicell system: the sum power of each cell versus the number of iterations

with ρ(S) = 0.7332, ρ(S′) = 0.6256, and the corresponding matrices G and

K are M-matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 An example of the downlink beamforming game that diverges in game G
and but converges in game G ′: the sum power of each cell versus the number

of iterations with ρ(S) = 2.0016, and ρ(S′) = 0.9815. In this case, the

corresponding matrix K is an M-matrix, but G is not. . . . . . . . . . . . 54



x List of Figures

4.1 A multicell system configuration with 3 cells, 3 users per cell. . . . . . . . . 77

4.2 Probability of NE’s uniqueness versus the intra-cell BS-MS distance d. . . . 78

4.3 Network sum-rates versus the intra-cell BS-MS distance d. . . . . . . . . . 79

4.4 Network sum-rates versus the transmit power to AWGN ratio at each BS for

d = 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Sum-rates versus number of iterations for d = 0.7 in the IA mode (solid lines

are for the BD precoding game and dashed-dotted lines are for the BD-DPC

precoding game). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Sum-rates versus number of iterations for d = 0.7 in the IC mode (solid

lines are for the BD precoding and dashed-dotted lines are for the BD-DPC

precoding). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 A multiuser multicell system with 3 cells and 3 MSs per cell. Each MS is

randomly located at a distance d from its connected BS. . . . . . . . . . . 106

5.2 Network sum-rates under the considered operating modes. . . . . . . . . . 107

5.3 Network sum-rates under the coordination mode, obtained from the ILA and

WMMSE algorithms with 10 random starting points or with 10 outer-loop

iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Convergence of the proposed ILA and WMMSE algorithms to maximize the

network sum-rate with the coordination. . . . . . . . . . . . . . . . . . . . 109

5.5 Convergence of the proposed iterative algorithm to solve Problem (5.11). . 110

5.6 Average CPU time versus the number of MSs per cell. . . . . . . . . . . . 111

6.1 A multicell system with 3 cells and 3 MSs per cell. Each MS is randomly

located at a distance d from its connected BS. . . . . . . . . . . . . . . . . 134

6.2 Network sum-rates versus the intra-cell BS-MS distance d. . . . . . . . . . 135

6.3 Network sum-rates versus the transmit power to AWGN ratio for d = 0.7. . 136

6.4 Network sum-rates versus intra-cell BS-MS distance d, obtained from ILA,

DPC-WMMSE, and WMMSE algorithms with 10 outer-loop iterations. . . 137

6.5 Convergence of the proposed ILA and DPC-WMMSE algorithm to maximize

the network sum-rate with interference coordination. . . . . . . . . . . . . 138

6.6 The convergence of Algorithm 6.1 to solve Problem (6.8). . . . . . . . . . . 139



xi

List of Tables

5.1 Complexity of the Proposed Algorithms . . . . . . . . . . . . . . . . . . . . 104



xii

List of Acronyms

3GPP Third Generation Partnership Project

4G Fourth Generation

AWGN Additive White Gaussian Noise

BC Broadcast Channel

BD Block-Diagonalization

bps Bit per second

BR Best Response

BS Base-Station

CDMA Code-Division Multiple-Access

CoMP Coordinated Multipoint Transmission/Reception

CSI Channel State Information

D.C. Difference-of-two-convex-functions

dB Decibel

DPC Dirty-Paper Coding

IA Interference Aware

IC Interference Coordination

ICI Inter-cell Interference

IEEE Institute of Electrical and Electronic Engineers

IET Institution of Engineering and Technology

ILA Iterative Linear Approximation

IPN Inter-cell Interference Plus Noise

IWF Iterative Water-Filling

JP Joint Signal Processing

KKT Karush-Kuhn-Tucker



List of Acronyms xiii

LTE Long-Term Evolution

LTE-A Long-Term Evolution - Advanced

MAC Multiple-Access Channel

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MMSE Minimum Mean Squared Error

MS Mobile-Station

MSE Mean Squared Error

NE Nash Equilibrium

OFDM Orthogonal Frequency Division Multiplexing

PSD Power Spectral Density

QoS Quality of Service

SDMA Space-Division Multiple-Access

SIC Successive Interference Cancellation

SINR Signal-to-Interference-Plus-Noise-Ratio

SNG Strategic Noncooperative Game

SNR Signal-to-Noise-Ratio

SOC Second-Order Cone

SOCP Second-Order Conic Programming

WF Water-Filling

WMMSE Weighted Minimization of the Mean Squared Error

WSR Weighted Sum-rate

ZF Zero-Forcing



xiv

List of Notations

• R and C denote the sets of real and complex numbers, respectively.

• A column vector is formatted in lower-case and bold, e.g., x; whereas a matrix is in

upper-case and bold, e.g., A.

• A matrix positive semi-definite matrix A is denoted as A ≽ 0.

• Superscripts (·)T , (·)∗, (·)H , and (·)† stand for transpose, complex conjugate, complex

conjugate transpose, and Moore-Penrose pseudo-inverse operations, respectively.

• [x]i denotes the ith element of a column vector x, whereas [A]i,j denotes the element

at row i, column j of a matrix A.

• Tr{A}, |A| and ∥A∥F denote the trace, determinant, and Frobenius norm of a matrix

A, respectively.

• [A]+ denotes the component-wise operation max{[X]m,n, 0}.

• [·]S denotes a projection onto a set S.

• ρ(A), denoting the spectral radius of a matrix A, is defined as ρ(A) , max{|λi|},
where λi’s are eigenvalues of A.

• IM stands for the M ×M identity matrix.

• diag(d1, d2, . . . , dM) denotes an M ×M diagonal matrix with diagonal elements d1,

d2, . . ., dM .

• blk{A1, . . . ,AK} denotes a square block-diagonal matrix with the main diagonal

blocks as square matrices A1, . . . ,AK .



List of Notations xv

• Ex[·] and varx[·] indicate the expectation and variance of random variable x, respec-

tively; whereas x⋆ denotes the optimal value of variable x.

• CN (0, σ2) denotes a circularly symmetric complex Gaussian random variable with

zero mean and power spectral density (PSD) σ2.



xvi



1

Chapter 1

Introduction

1.1 Interference Management in Wireless Cellular Networks

A defining characteristic of a wireless channel is its broadcast nature. In addition, the

limited wireless spectrum resource constrains many wireless devices to share the same

communication channel, thus inducing mutual inter-user interference. As the interference

restricts the reusability of the spectrum resource and the performance among communicat-

ing entities, it has always been a critical issue in the deployment of any wireless system.

In a multicell environment, the inter-user interference can come from two sources: other

devices in the same cell, i.e., intra-cell interference, and co-channel interference from other

cells, i.e., inter-cell interference (ICI).

In order to better utilize the spectrum resource and control the interference, fractional

frequency reuse has been widely adopted in early wireless cellular systems, such as Global

System for Mobility (GSM). As illustrated in Figure 1.1 for a fractional frequency reuse

system, adjacent cells are guaranteed to operate in different frequencies [1]. On the contrary,

cells operating on the same frequency are sufficiently apart such that ICI is kept sufficiently

low. Thus, in this conventional multicell system, the ICI is controlled by deploying the

frequency reuse pattern and setting maximum power spectral density levels at all the base

stations (BS). As a result, the interference management is usually relegated to a per-cell

basis, and the ICI is treated as background noise. It is to be noted that while fractional

frequency reuse is adequate in controlling the ICI, each cell is allowed to utilize only parts of

the available spectrum. Thus, fractional frequency reuse is inefficient in spectral utilization.

To improve the spectral efficiency, current designs of wireless networks adopt universal
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Direct signal

Inter-cell interference

1 4 2 3
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Base-station
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Fig. 1.1 Example of a fractional frequency reuse multicell network with a
reuse factor of 7.

frequency reuse where all cells have the potential to use all available radio resources. This

implementation is necessary for the current 4G and future wireless networks to cope with

the fast increasing number of wireless mobile-stations (MS) and their demand for higher

transmission rates. However, universal frequency reuse comes at the cost of severe ICI,

especially at the cell-edge terminals. As depicted in Figure 1.2, the direct transmission

to a particular MS may be strongly corrupted by the ICI from the adjacent cells. While

achieving higher spectrum efficiency, universal frequency reuse may reduce the sum-rate of

the network if the ICI is not adequately managed.

In recent 3GPP LTE Releases, several forms of interference avoidance and coordination

techniques were proposed with the main objective to efficiently control the ICI, especially at

the cell-edge MSs [2]. In inter-cell interference coordination (ICIC), such techniques as time-

domain solutions (e.g., subframe alignment) and frequency-domain methods (e.g., channel
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Direct signal

Inter-cell interference

Fig. 1.2 Example of a multicell network with universal frequency reuse.

orthogonalization) explicitly control how the radio resources are utilized to moderate the

ICI. This approach in dealing with the ICI might be regarded as passive [3]. On the con-

trary, the emerging wireless communication standard advocates a more active treatment of

interference through some forms of interference-aware multicell coordination. In this more

advanced coordination technique, namely coordinated multipoint transmission/reception

(CoMP), the inter-cell transmission, instead of being considered as the source of interfer-

ence, is taken into account as an extra means to enhance the overall system performance.

The underlying concept of CoMP is quite simple: the coordinated BSs no longer adjust

their parameters (such as precoding, subcarrier assignment, etc.) or decode independently

of each other, but instead coordinate the precoding or decoding processes on the availabil-

ity of channel state information (CSI) and the amount of information signaling over the

backhaul links among the BSs [3]. One interesting aspect of exploiting coordination among

the cells is that a fairly small change of infrastructure is required to implement CoMP. For

this reason, it is envisioned that CoMP will be a key technology of LTE-Advanced [2, 4].
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1.2 Coordinated Multipoint Transmission/Reception (CoMP)

The latest 3GPP LTE-Advanced Release considers CoMP as an enabling technology to

improve coverage, throughput and efficiency [2]. Actively dealing with the ICI, this solution

takes advantage of the inter-cell transmissions to enhance the overall system performance.

In the downlink, CoMP coordinates the simultaneous transmissions from multiple BSs to

the MSs. Such coordination is especially helpful for the cell-edge MSs, whose link conditions

are usually unfavorable due to the long distances from their corresponding BSs, while being

more susceptible to the ICI. In the uplink, CoMP allows for the exploitation of multiple

receptions at multiple BSs to jointly decode the uplink signals from the MSs. It is mentioned

in [2] that CoMP is able to significantly improve the link performance in both uplink and

downlink transmissions. However, this performance enhancement may come at the cost of

excessively high complexity in the joint precoding/decoding process and the demand for

ideal backhaul transmissions and synchronization among the coordinated BSs.

Following the convention in literature, CoMP can be classified into the following three

modes according to the extent of coordination among the cells [5]

• Joint Signal Processing (JP): Very tight coordination among the cells is assumed

to perform joint signal processing. User data is exchanged among the coordinated BSs

such that the multiple BSs are simultaneously transmitting/receiving data signals

to/from the MSs within the coordinated area of multiple cells. This mode is also

referred to as Network Multiple-Input Multiple-Output (MIMO).

• Interference Coordination (IC): User data is not exchanged among the BSs.

Each MS transmits/receives data signals only to/from its (single) serving BS, while

control information is exchanged among the coordinated BSs to jointly control the

ICI. Hereafter, the “coordination” mode or the “interference coordination” mode is

referred interchangeably.

• Interference Aware (IA): There is no information exchange among the transmit-

ting entities. However, the interference is estimated at each receiving entity and fed

back to its corresponding transmitter. Acting as a rational entity, each BS selfishly

adjusts its transmit/receive strategy according to the knowledge of the interference

measured by itself or at its connected MSs. Essentially, the IA mode represents a
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strategic noncooperative game (SNG) with the BSs being the players. Hereafter, the

“competition” mode or the “interference aware” mode is referred interchangeably.

Different CoMP modes impose different requirements on the data and signaling ex-

changes, as well as the CSI knowledge needed at the coordinated BSs. There is also a

trade-off between the performance gain obtained by a CoMP mode and the amount of

signaling overhead it placed on the backhaul links. Specifically, the higher extent of coor-

dination among the cells will extract higher performance gains from the multicell network

at the cost of higher signaling overhead.

In the JP mode, the antennas from the multiple BSs form a large single antenna array

[3,6–8]. Data streams intended for all the MSs are jointly processed and transmitted from

all the antennas. Apparently, while achieving the best performance from the multicell

network, such an approach is the most complex CoMP mode (i.e., with the highest level

of coordination). In a lesser level of coordination, the IC mode allows a BS to transmit

the data only to the MSs within its cell [9, 10]. However, for both JP and IC modes,

each coordinated BS may need to know the CSI of all the MSs in the system, even that

of unconnected MSs in order to fully control the ICI. In addition, these two modes may

require a significant amount of signaling (CSI exchange) to be exchanged among the BSs

via an ideal backhaul. On the contrary, under the IA mode, each BS is only required to

know the CSI of its connected MSs [11, 12]. Moreover, the IA mode, corresponding to the

lowest level of coordination, only demands the signaling on a per-cell basis.

It can be seen that a CoMP system under the JP mode mimics a single large MIMO

system with joint transmission/reception processing. Thus, existing research in MIMO

precoding designs can be readily adopted to the JP mode. For this reason, the research in

this dissertation focuses on the precoding designs for the two remaining CoMP modes: IC

and IA.

1.3 Technical Challenges in Precoding Designs for a CoMP

System

Conventionally, most of the related works in precoding designs focus on the single-cell

setting where the ICI is simply treated as background noise at the MSs. Thus, the effect of

ICI is neglected and the precoding designs are performed independently across the multiple
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cells. However, with universal frequency reuse, ICI is much more pronounced and should

not be ignored. Consequently, existing research in single-cell precoding designs need a

rework to take into account the adverse effect of ICI when applied to a multicell system.

As discussed in Section 1.2, CoMP presents a paradigm shift in precoding designs from

the traditional independent per-cell approach to the more coordinated multicell approach.

While the potential of performance enhancement of CoMP through the means of precoding

is promising, there are still several technical challenges in CoMP precoding designs.

First, it is well known that the performance of a precoding design is largely dependent

on the knowledge of CSI at the transmitter. Thus, it is imperative that the transmitter,

acting as a central unit, gathers the CSI to all of its connected users. However, due to the

large-scale and distributed nature of the multicell system, it is much more difficult for a

central unit to collect the CSI from all coordinated BSs to all MSs. Hence, instead of using

a central unit in a CoMP system, the precoders should be devised in a fully distributed

manner across the coordinated BSs. Essentially, each coordinated BS should design the

precoders for its connected MSs using only local CSI.

Second, due to the distributed implementation in the precoding designs, the coordi-

nated BSs may need to exchange signaling and control information. However, there are

restrictions on the sharing of information among the coordinated BSs due to the limitations

of the backhaul links. Thus, it is important to define and quantize the amount of mes-

sage exchange, including the inter-cell messages among coordinated BSs and the intra-cell

messages between a BS and its connected MS.

Third, while many precoding design problems are convex under the single-cell setting,

they are nonconvex under the CoMP setting. These problems, typically difficult and com-

putationally complex to optimally solve, pose a requirement for efficient suboptimal algo-

rithms. Coupled with the distributed implementation requirement, it is important that

certain optimization steps in the algorithms can be assigned to and executed at each BS

and MS with local information. In addition, the algorithms should provide a good trade-off

between the achievable performance and the computational complexity.

1.4 Thesis Contributions and Organization

CoMP is one of the promising techniques to improve the spectral efficiency and performance

of cellular networks beyond what is possible with single-cell transmissions. Whether or not



1.4 Thesis Contributions and Organization 7

CoMP can be realized to its full potential depends on how the aforementioned technical

challenges are addressed. The objective of this Ph.D. research is to develop low-complexity

distributed algorithms that directly address these technical challenges. Our goal is also to

devise the structure of the CoMP precoders and the message exchange mechanism among

the coordinated BSs and MSs that meet certain design criteria, including power mini-

mization and sum-rate maximization. In addition, this research attempts to expose new

perspectives to and understanding of the interactions among the coordinated BSs for a

CoMP system under the IA and IC mode.

Under the IA mode, this work characterizes how the multicell SNG is played among

the BSs and examines how each BS adaptively changes its precoding strategy accordingly

to the ICI. The conditions on the existence and uniqueness of the game’s NE and the

convergence to the NE are subsequently studied. Under IC mode, this work proposes low-

complexity convex approximation approaches to solve nonconvex problems of joint CoMP

precoding designs. Our proposed solution approaches reveal not only the structure of the

optimal precoders, but also the message signaling mechanism to facilitate their distributed

implementation with local processing at each coordinated cell. Via extensive numerical

simulations, we show that significant performance improvements in terms of transmit power

and sum-rate can be achieved by jointly designing the precoders across the coordinated cells.

In this research, it is recommended that the precoding designs in a CoMP system

should be performed in a fully distributed manner. However, one may argue that these

distributed precoding designs may come with the issues of excessive message exchanges

and synchronization among the coordinated BSs, which might be problematic in practical

implementation. Instead, having a centralized unit, which obtains all the CSI knowledge,

performs the precoding designs, then passes the optimized precoders to the corresponding

BSs or MSs, could be more beneficial. Nonetheless, note that it is possible to deploy

the controllers of the coordinated BSs at a same physical site in practice. Thus, the

proposed distributed algorithms in this work can be implemented across the co-located

controllers without the issues of message exchanges and synchronization. In fact, the

distributed implementation of the proposed algorithms is very relevant as it allows the

multiple controllers to actually share the computation loads and expedite the optimization

process of the precoders.

The remainder of the dissertation is organized as follows.

Chapter 2 presents some relevant background on precoding designs in single-cell and
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multicell systems that are useful for the development of various precoding designs in the

subsequent chapters.

Chapter 3 is concerned with the game theoretical approach in multicell precoding de-

signs with the objective of minimizing the transmit power at the BSs. Sharing the same

physical resource, the BS of each cell wishes to minimize its transmit power subject to a

set of target signal-to-interference-plus-noise ratios (SINRs) at the multiple users in the

cell. In this context, at first, the chapter considers a SNG where each BS greedily de-

termines its optimal downlink beamformer strategy in a distributed manner, without any

coordination among the cells. Via the game theory framework, it is shown that this game

belongs to the framework of standard functions. The conditions guaranteeing the existence

and uniqueness of a Nash Equilibrium (NE) in this competitive design are subsequently

examined. The chapter then revisits the fully coordinated design in multicell downlink

beamforming, where the optimal beamformers are jointly designed among the BSs. A com-

parison between the competitive and coordinated designs shows the benefits of applying

the former over the latter in terms of each design’s distributed implementation. Finally, in

order to improve the efficiency of the NE in the competitive design, the chapter considers

a cooperative game through a pricing mechanism. The pricing consideration enables a BS

to steer its beamformers in a cooperative manner, which ultimately limits the interference

induced to other cells. The study on the existence and uniqueness of the new game’s NE is

then presented. The chapter also derives a condition on the pricing factors that allows the

new NE point to approach the performance established by the coordinated design, while

retaining the distributed nature of the multicell game.

Chapter 4 studies multiuser precoding designs in a multicell system with the objective

of maximizing the data-rate in the downlink transmission. We examine the multicell sys-

tem where block-diagonalization (BD) precoding is utilized on a per-cell basis under two

operating modes: competition and coordination. In the competition mode, the BS at each

cell wishes to maximize the sum-rate for its connected MSs with BD precoding. In this

context, the chapter considers a SNG, where each BS greedily determines its precoding

strategy in a distributed manner, based on the knowledge of the ICI at its connected MSs.

Via the game-theory framework, the existence and uniqueness of a NE in this SNG are

subsequently studied. In the coordination mode, the BD precoders are jointly designed

across the multiple BSs to maximize the network weighted sum-rate (WSR). Since this

WSR maximization problem is nonconvex, we develop a low-complexity and distributed al-
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gorithm to obtain at least a locally optimal solution. Finally, we investigate the multiuser

multicell system with BD-Dirty-Paper Coding (BD-DPC) being utilized at each BS on a

per-cell basis. We then characterize the BD-DPC precoding game for the multicell system

in the competition mode and propose an algorithm to jointly optimize BD-DPC precoders

for the multicell system in the coordination mode.

Chapter 5 is concerned with the maximization of the WSR in the multicell MIMO

multiple-access channel (MIMO-MAC). We consider a multicell network operating in the

same frequency channel with multiple MSs per cell. Assuming that the multicell network

operates in the IC mode, each BS only decodes the signals for the MSs within its cell,

while the inter-cell transmissions are treated as noise. Nonetheless, the uplink precoders

are jointly optimized at MSs through the coordination among the cells in order to maxi-

mize the network WSR. Since this WSR maximization problem is shown to be nonconvex,

obtaining its globally optimal solution is computationally complex. Thus, our focus in this

work is on the development of low-complexity algorithms to obtain at least locally optimal

solutions. Specifically, we propose two iterative algorithms: one is based on successive

convex approximation and the other is based on iterative minimization of weighted mean

squared error. Both solution approaches then reveal the structure of the optimal uplink

precoders and the message signaling mechanism to facilitate their distributed implementa-

tion among the coordinated cells. Simulation results show a significant improvement in the

network sum-rate by the proposed algorithms, compared to the case with no interference

coordination.

Chapter 6 studies the precoding designs to maximize the WSR in a multicell MIMO

broadcast channel (MIMO-BC). We consider a multicell network under universal frequency

reuse with multiple MSs per cell. With IC among the multiple cells, the BS at each cell

only transmits information signals to the MSs within its cell using the dirty-paper coding

(DPC) technique, while coordinating the ICI induced to other cells. The main focus of this

chapter is to jointly optimize the encoding covariance matrices across the BSs in order to

maximize the network-wide WSR. Since this optimization problem is shown to be noncon-

vex, obtaining its globally optimal solution is highly intractable. To address this problem,

we consider two low-complexity solution approaches with distributed implementation to

obtain at least locally optimal solutions. In the first approach, by applying a successive

convex approximation technique, the original nonconvex problem is decomposed into a se-

quence of simpler problems, which can be solved optimally and separately at each BS. In
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the second approach, the WSR problem is solved via an equivalent problem of weighted

sum mean squared error minimization. Both solution approaches will unfold the control

signaling among the coordinated BSs to allow their distributed implementation. Simula-

tion results confirm the convergence of the proposed algorithms, as well as their superior

performances over schemes with linear precoding or no interference coordination among

the BSs.

Chapter 7 presents the concluding remarks and gives suggestions for further studies.
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Chapter 2

Literature Review

This chapter presents some of the current state-of-the-art precoding designs in MIMO

wireless communications. The first part of this chapter discusses precoding techniques

in multiuser single-cell systems with two objectives: power minimization and sum-rate

maximization. The second part of this chapter then presents some recent advances in

multicell precoding designs.

2.1 Precoding Designs in a MIMO Single-cell System

2.1.1 Downlink Beamforming for Power Minimization

Let us consider a single cell system comprising ofK single-antenna MSs, concurrently served

by an M -antenna BS. Using linear precoding, the BS multiplexes several data streams in

the form as x =
∑K

i=1 uiwi, where ui is the signal symbol intended for user-i with unit

energy, i.e., E[|ui|] = 1, and wi is an M × 1 beamformer vector designed for user-i. In the

downlink transmission, the received signal at user-i can be modeled as

yi = hH
i x+ zi = hH

i

K∑
j=1

ujwj + zi, (2.1)

The materials presented in Chapter 2 have been published as a book chapter [13].
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where h∗
i ∈ CM×1 is the channel vector to user-i and zi ∼ CN (0, σ2). It is easy to verify

that the signal-to-interference-plus-noise ratio (SINR) is given by

SINRi =

∣∣hH
i wi

∣∣2∑K
j ̸=i

∣∣hH
i wj

∣∣2 + σ2
, (2.2)

where
∑K

j ̸=i

∣∣hH
i wj

∣∣2 is the inter-user interference at user-i.

Note that the performance of a system is usually quantified by the quality of service

(QoS) at each MS and the power usage at the BS. In this case, the QoS is defined as the

SINR, which is directly related to the achievable rate at the MS. One of the more popular

design criteria in multiuser beamforming is that the BS attempts to minimize its transmit

power subject to the QoS constraints at MSs. This power minimization problem is stated

as

minimize
w1,...,wK

K∑
i=1

∥wi∥2 (2.3)

subject to

∣∣hH
i wi

∣∣2∑K
j ̸=i

∣∣hH
i wj

∣∣2 + σ2
≥ γi,

where γi is the target SINR at user-i.

This optimization problem was initially considered to be nonconvex [14, 15]. Nonethe-

less, the problem can be optimally solved by various approaches. Uplink-downlink duality

was exploited in [14–17], where the downlink problem under individual SINR constraints

can be solved via the equivalent uplink problem, which is convex and much easier to solve.

In another approach in [18], this nonconvex problem was relaxed into a convex semi-definite

program (SDP). In more recent works [19–21], the authors formulated the downlink prob-

lem directly as a convex second-order conic program (SOCP). A simple and fast fixed-point

iterative algorithm was also proposed to find the optimal downlink beamformers.

2.1.2 Uplink Precoding on the Multiple-Access Channel

This section provides a brief review on MIMO multiple-access channel (MAC) in a single-

cell multiuser system. The sum-rate maximization in the MAC and optimal designs of the

uplink covariance matrices will be sequentially presented. Consider a system with K MSs,
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each equipped with N transmit antennas, concurrently transmitting to a BS equipped with

M receive antennas. The uplink transmission can be modeled as

y =
K∑
i=1

Hixi + z, (2.4)

where xi ∈ CN is the transmitted vector signal from user-i, y ∈ CM is the received vector

signal at the BS, Hi ∈ CM×N represents the channel matrix from user-i to the BS, and z is

the AWGN at the BS with zero mean and covariance matrix Z. We denote Xi = E[xix
H
i ]

as the transmit covariance matrix of user-i.

In the MAC, the capacity-achieving decoder is the successive interference cancellation

(SIC) decoder [22, 23], where the BS decodes the signals from the multiple users in se-

quence. After the BS decodes one user’s signal, it then suppresses this user’s signal from

its received signal such that this user’s signal no longer interferes the users being decoded

later. For example, assume that the decoding order is from user-1 to user-K. Using SIC,

after decoding the signal from user-1, the BS suppresses the signal from user-1 from the

received signal before processing the signal from user-2. This process continues such that

user-i only experiences the interferences from user-(i+ 1) to user-K. While treating these

interferences as noises, the achievable rate of user-i is [24]

RMAC
i = log

∣∣∣∣∣∣I+HH
i

(
Z+

K∑
j>i

HjXjH
H
j

)−1

HiXi

∣∣∣∣∣∣
= log

∣∣∣Z+
∑K

j=i HjXjH
H
j

∣∣∣∣∣∣Z+
∑K

j>i HjXjHH
j

∣∣∣ . (2.5)

The sum-rate in the MAC
∑K

i=1R
MAC
i can be simplified as

K∑
i=1

RMAC
i =

K∑
i=1

log

∣∣∣Z+
∑K

j=iHjXjH
H
j

∣∣∣∣∣∣Z+
∑K

j>i HjXjHH
j

∣∣∣ = log

∣∣∣∣∣Z+
K∑
i=1

HiXiH
H
i

∣∣∣∣∣− log |Z| . (2.6)
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The goal is to maximize this sum-rate. That is,

maximize
X1,...,XK

log

∣∣∣∣∣Z+
K∑
i=1

HiXiH
H
i

∣∣∣∣∣− log |Z| (2.7)

subject to Tr{Xi} ≤ Pi, ∀i

Xi ≽ 0, ∀i,

where Pi is maximum allowable transmit power at user-i. This optimization problem

is a convex problem, which allow for efficient algorithms in finding its optimal solution.

In addition, as the constraints are decoupled for each of the variables X1, . . . ,XK , the

optimization can be performed sequentially for each variable. In particular, while treating

Zi = Z+
∑K

j ̸=i HjXjH
H
j as noise, one may perform the optimization

maximize
Xi

log
∣∣Zi +HiXiH

H
i

∣∣ (2.8)

subject to Tr{Xi} ≤ Pi

Xi ≽ 0.

This optimization problem can be solved by applying the water-filling (WF) process as

follows. First, we perform the eigen-decomposition

HH
i Z

−1
i Hi = UiDiU

H
i , (2.9)

where Ui is a semi-unitary matrix and Di is diagonal matrix with non-negative eigenvalues.

Then, the optimal solution X⋆
i is obtained from the well-known WF solution [23]

X⋆
i = Ui

[
µiI−D−1

i

]+
UH

i , (2.10)

where µi is the water-level, chosen to meet the power constraint Tr
{[

µiI−D−1
i

]+}
= Pi.

The solution to the MAC sum-rate maximization is then obtained by iteratively performing

the above WF process for each of the variables X1, . . . ,XK until we reach the converging

state where the MAC sum-rate can no longer be improved.
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2.1.3 Downlink Precoding on the Broadcast Channel

This section reviews the multiuser Gaussian vector broadcast channel (BC) in a single-cell

system. We consider the same system model as in Section 2.1.2 but the transmission is on

the downlink instead. Denote x =
∑K

i=1 xi as the transmitted signal from the BS, where xi

represents the transmitted signal for user-i. Further denote Qi = E[xix
H
i ] as the transmit

covariance matrix for user-i. The received signal at the ith user is given by

yi = HH
i x+ zi = HH

i

K∑
j=1

xj + zi, (2.11)

where zi is the additive Gaussian noise with the covariance Zi and HH
i ∈ CN×M is the

channel from the M -antenna BS to the N -antenna MS-i.

It is well known that the capacity-achieving coding scheme in the BC is “dirty-paper

coding” (DPC) [25–27]. The fundamental idea of DPC is that when a transmitter knows the

interference in a channel in advance, it can design a code to compensate for the interference

such that the capacity of the channel is the same as if there is no interference.1. Assuming

the encoding order from user-K to user-1, DPC is utilized such that the intended codeword

for user-i does not see the intra-cell interference from user-(i + 1) to user-K. Thus, the

achievable rate at user-i is given by

RBC
i = log

∣∣∣∣∣∣I+Hi

(
Zi +

i−1∑
j=1

HH
i QjHi

)−1

HH
i Qi

∣∣∣∣∣∣
= log

∣∣∣Zi +
∑i

j=1H
H
i QjHi

∣∣∣∣∣∣Zi +
∑i−1

j=1H
H
i QjHi

∣∣∣ . (2.12)

When the objective is to maximize the sum-rate in the BC with DPC, the optimization

is given by

1The theory of DPC is discussed in detail in Appendix A



16 Literature Review

maximize
Q1,...,QK

K∑
i=1

log

∣∣∣Zi +
∑i

j=1H
H
i QjHi

∣∣∣∣∣∣Zi +
∑i−1

j=1H
H
i QjHi

∣∣∣ (2.13)

subject to
K∑
i=1

Tr{Qi} ≤ P

Qi ≽ 0, ∀i,

where P is total allowable transmit power at the BS. Unlike the MAC problem (2.7), the

optimization problem for the BC channel is nonconvex due to the inter-user interference

components in the objective function. Fortunately, via the so-called BC-MAC duality

[28,29], the BC problem (2.13) can be transformed into an equivalent MAC problem

maximize
X1,...,XK

log

∣∣∣∣∣I+
K∑
i=1

H̃iXiH̃
H
i

∣∣∣∣∣ (2.14)

subject to
K∑
i=1

Tr{Xi} ≤ P,

Xi ≽ 0, ∀i,

where H̃i = HiZ
−1/2
i . Unlike the MAC problem (2.7), the power constraint in problem

(2.14) is now a single sum-power constraint on all covariance matrix variables Xi’s. Since

the transformed problem (2.14) is now convex, it can be optimally solved by efficient convex

optimization methods, including the block WF algorithm [30] and the dual decomposition

method [31]. The optimal solution Q⋆
i of the original BC problem (2.13) then can be

found from the optimal solution X⋆
i of the equivalent MAC problem through the so-called

MAC-BC transformation [28].

It is to be noted that DPC can only serves as a theoretical benchmark due to its high

complexity implementation that involves random nonlinear coding. Linear transmission

techniques are an attractive alternative because of their simplicity. With linear precoding,

the achievable rate at MS-i is given by
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Ri = log

∣∣∣∣∣∣I+Hi

(
Zi +

K∑
j ̸=i

HH
i QjHi

)−1

HH
i Qi

∣∣∣∣∣∣
= log

∣∣∣Zi +
∑K

j=1H
H
i QjHi

∣∣∣∣∣∣Zi +
∑K

j ̸=iH
H
i QjHi

∣∣∣ , (2.15)

where the inter-user interference is treated as background noise. When the goal is to

maximize the sum-rate in the BC, the problem is to maximize
∑K

i=1Ri. That is,

maximize
Q1,...,QK

K∑
i=1

log

∣∣∣Zi +
∑K

j=1H
H
i QjHi

∣∣∣∣∣∣Zi +
∑K

j ̸=i H
H
i QjHi

∣∣∣ (2.16)

subject to
K∑
i=1

Tr{Qi} ≤ P

Qi ≽ 0, ∀i.

Like the sum-rate maximization problem with DPC in (2.13), the above optimization is

nonconvex. However, it is no longer possible to transform problem (2.16) into an equivalent

convex problem in the MAC as in (2.14). Thus, it is generally difficult to obtain its glob-

ally optimal solution. Recent works in [32, 33] proposed iterative algorithms that convert

this nonconvex problem into a sequence of convex mean squared error (MSE) minimization

problems. These algorithms are shown to converge monotonically to a local optimal solu-

tion. However, the drawbacks of these algorithms are their high computational costs and

intractable solutions. Alternately, one may apply the block diagonalization (BD) precod-

ing [34–37] where the inter-user interference is completely eliminated, i.e., HH
i QjHi = 0, if

j ̸= i. In this case, the precoding matrix for a particular user, say user-i, Qi is limited to be

in the null space created by [H1, . . . ,Hi−1,Hi+1, . . . ,HK ]. As a result, the objective func-

tion under BD constraints becomes convex and the optimal solution can easily be obtained

in a closed-form WF solution [35]. It is to be noted that BD precoding is only restricted to

the system where the number of transmit antennas at the BS is no smaller than the total

number of receive antennas at all the MSs. Nonetheless, even with the BD constraints,

the performance gap between BD precoding and the benchmark DPC is negligible at high

SNR [35].
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2.2 Precoding Designs in a MIMO Multicell System with CoMP

This section examines some recent advances in precoding designs for a MIMO multicell

network employing CoMP. Note that these precoding designs share many similar properties

with the precoding designs in single-cell networks. The difference here is the consideration of

individual power constraint at each coordinated BS and the inherent ICI among the cells.

With per-base-station power constraints, this section reviews CoMP precoding designs

under the following two design criteria: (i) minimizing the transmit power at the BSs with

a set of target rates at the MSs and (ii) maximizing the sum-rate at the connected MSs.

Some of the concepts of game theory applicable to CoMP under IA and IC modes are

presented in Appendix B.

2.2.1 Interference Aware

The study of precoding design and power control in a mutual interference network using

game theory has recently attracted considerable research attention. By considering the

interference network as a SNG, each player greedily adapts its strategy to maximize its

own utility, given the strategies from other players [11, 38–49].2 In general, these works

focus on studying the existence and uniqueness of the stable operating point of the system,

i.e., the NE. The uplink power control problem in a single-cell code-division multiple-access

(CDMA) data system with multiple competing users was studied in [38,39], where the utility

function was defined as the ratio of throughput to transmit power. A pricing mechanism

was investigated in [39] to obtain a more efficient solution of the power control game. For

an orthogonal frequency division multiplexing (OFDM) system over a shared band, the

work in [11] has inspired various works on the iterative water-filling (IWF) algorithm, such

as [41–45,49] with sum-rate as the utility function, or [46] with transmit power as the utility

function.

In multiple antenna systems, the work in [47] considered a multicell system, where each

cell consisted of one multiple-antenna BS and one single antenna MS. The objective of [47]

was to study the precoding beamforming vector at the two BSs in competitive and cooper-

ative manners. In the multiuser MIMO channels, the work in [48] studied the competitive

precoding design, where each player wished to maximize its mutual information. It is to

2Hereafter, a cell or a base-station is referred to as a player interchangeably, whereas a MS is referred
to as a user.
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be noted that these works only considered the system where each transmitter, i.e, BS,

communicates with only one receiver, i.e., MS. We now discuss in detail the representative

works that are closely related to the multicell network with CoMP.

Consider a MIMO multicell system with Q BSs and Q MSs. In each cell, the BS is

sending information only to its connected MS. Let Ω = {1, . . . , Q} denote the set of cells

(players). The transmission over the q-th MIMO channel with Mq transmit and Nq receive

dimensions can be described by the baseband signal model

yq = Hqqxq +

Q∑
r ̸=q

Hrqxr + zq, (2.17)

where xq ∈ CMq×1 is the transmitted signal vector at BS-q and yq ∈ CNq×1 is the received

signal vectors at MS-q, and zq is the AWGN with a covariance matrix Zq. The channel

matrix from the BS-r’s transmitter to MS-q is represented by Hrq ∈ CNr×Mq . Likewise,∑Q
r ̸=q Hrqxr is the interference induced by other MIMO links at MS-q.

Denote the precoding strategy at BS-q as Qq = E
[
xqx

H
q

]
and the precoding strategy

profile at all BSs except BS-q as Q−q. While treating the ICI from other links as additive

Gaussian noise, the achievable rate at the link-q between BS-q and MS-q is given by [24]

Rq(Qq,Q−q) = log
∣∣I+HH

qqR
−1
q (Q−q)HqqQq

∣∣ , (2.18)

where Rq(Q−q) = Zq +
∑Q

r ̸=q HrqQrH
H
rq is the interference plus noise covariance matrix at

MS-q.

Depending on the strategies of the other players, which are reflected in Rq(Qq,Q−q),

player-q may want to maximize its achievable rate subject to a constraint on its transmit

power. In that case, the utility of player-q is defined as uq = Rq(Qq,Q−q), whereas the set

of admissible strategies is defined as

Pq =
{
Qq ∈ CMq×Mq : Qq ≽ 0, Tr{Qq} ≤ Pmax

q

}
. (2.19)

Naturally, the players in Ω forms a SNG with the utility uq and the set of admissible

strategies Pq for player-q. Mathematically, the SNG can be defined as

GR = (Ω, {Pq}q∈Ω, {Rq(Qq,Q−q)}q∈Ω) . (2.20)
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On the contrary, if each player attempts to minimize its transmit power subject to a

constraint on its achievable rate, the utility function is defined as uq = −Tr{Qq}, whereas
the set of admissible strategies is defined as

Rq(Q−q) =
{
Qq ∈ CMq×Mq : Qq ≽ 0, Rq(Qq,Q−q) ≥ Rmin

q

}
. (2.21)

Thus, the corresponding SNG is given by

GP = (Ω, {Rq(Q−q)}q∈Ω, {−Tr{Qq}}q∈Ω) . (2.22)

For the case of multiple input single output (MISO) channels, i.e., Nq = 1,∀q, the NE

characterizations of games GR and GP are quite straightforward. It is maintained in [47]

that the best response (BR) beamforming strategy at each player is the maximal ratio

transmitting (MRT) beamformer, i.e., xq = HH
q /∥Hq∥. This is due to the fact that an

MRT beamformer maximizes the SINR at its corresponding receiver. Thus, each player

only concerns with its transmit power adjustment to maximize its utility.

Let Pq be the transmit power at BS-q. In game GR, it is straightforward to see that

each player transmits at its maximum power at the NE [47], i.e., Pq = Pmax
q . Thus the NE

of game GR is always existent and unique. In game GP , player-q performs its BR strategy

at a given time slot, say t+ 1, by adjusting its transmit power Pq as

Pq[t+ 1] =
eR

min
q − 1

eRq [t] − 1
Pq[t], q ∈ Ω, (2.23)

where eRq [t] − 1 is the measured SINR at MS-q at time t. Note that the above power

update is well-known as the optimal power control mechanism for CDMA-based wireless

networks [50]. This iteration always converges to a unique fixed-point, which is the NE of

game GP , if such a NE exists [51]. The condition for the existence and uniqueness of game

GP shall be presented later as one of the research topics in Chapter 3.

For the case of multiple receive antennas, i.e., Nq > 1, the analyses of games GR and GP
are much more difficult. Nonetheless, various works in literature have addressed the NE

analysis in these games [12, 46, 48]. For both games, the BR strategy by each player has

the WF structure. Specifically, given the eigen-decomposition HH
qqR

−1
q Hqq = UqDqU

H
q ,
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the BR strategy at player-q is

Q⋆
q = WFq(Q−q) = Uq

[
µqI−D−1

q

]+
UH

q , (2.24)

where µq is the water-level, chosen either to meet the power constraint in game GR or to

meet the rate constraint in game GP . Each player plays the WF strategy until the game

converges. For this reason, these games are often referred to as IWF games in literature.

The NE of this noncooperative game, which is the intersection between the BR strategies

of each user, can be restated as

Q⋆
q = WFq(Q

⋆
−q), ∀q ∈ Ω. (2.25)

Using this WF structure, the sufficient conditions on the existence and uniqueness of

these IWF games are presented in [12,48]. A key observation from those conditions reveals

that the game’s NE is always existent and unique when the ICI is sufficiently small.

2.2.2 Interference Coordination

In the previous section, a fully decentralized approach to the CoMP under the IA mode

was examined using the game theory framework and the NE of the system was charac-

terized. However, it is well-known that the NE need not be Pareto-efficient [52]. Via the

interference coordination among the BSs, significant power reduction or rate enhancement

can be obtained by jointly designing all the precoders across the coordinated BSs at the

same time. Pareto-efficient precoding designs have been recently proposed in [47, 53] for

the multicell system with interference coordination.

When the design setting is to jointly maximize the network sum-rate, the joint opti-

mization for CoMP under the IC mode can be stated as

maximize
Q1,...,QK

Q∑
q=1

ωq

∣∣I+HH
qqR

−1
q (Q−q)HqqQq

∣∣ (2.26)

subject to Tr{Qq} ≤ Pmax
q , ∀q

Qq ≽ 0, ∀q, (2.27)

where ωq is the non-negative weight for the link-q. For a given set of weights ω1, . . . , ωK , the
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optimal solution to the above problem represents an optimal trade-off point between the

cells’ rates. Certainly, this point is Pareto-optimal, i.e., one cell cannot further improve

its data rate without decreasing the data rate at (one or more) other cells. Similar to

the optimization for the BC in a single-cell network (2.16), problem (2.26) is nonconvex.

Thus, obtaining its globally optimal solution is a highly complex process. Fortunately, the

iterative algorithms developed for the BC in [32, 33], as mentioned in Section 2.1.3, can

be readily applied to this multicell problem. Alternately, by successively approximating

the nonconvex part in the objective function of (2.26) to a convex lower bound function,

the work in [54] proposed an algorithm that converges monotonically to a local optimal

solution. However, these solution approaches are centralized and might not be suitable to

the multicell setup. Recent works in [55–57] proposed an interference pricing mechanism

that decomposes the nonconvex problem (2.26) and solves it on a per-cell basis. The

idea of this approach is as follows. To isolate the ICI terms that render problem (2.26)

nonconvex, we define the weighted sum-rate at all BSs except BS-q as fq(Qq,Q−q) =∑Q
r ̸=q ωrRr(Qq,Q−q). At an instance of (Qq,Q−q), evaluated at (Q̄q, Q̄−q), after taking

the Taylor’s expansion of fq(·) and retaining only the linear term, the optimization (2.26)

can be approximated by a set of Q per-cell problems

maximize
Qq

ωq

∣∣I+HH
qqR

−1
q (Q−q)HqqQq

∣∣− Tr{AqQq} (2.28)

subject to Tr{Qq} ≤ Pmax
q ,

where Aq, obtained from the negative derivative of fq(·) with respect to Qq [57], is the

pricing matrix charged on the ICI caused by BS-q. Note that this approximated problem

only requires local channel information pertained to BS-q. In addition, it is convex on Qq,

and its optimal solution can easily be obtained in a closed-form WF solution [57]. Thus,

the problem can be solved locally at each BS. Interestingly, the algorithm was shown to

converge monotonically to a local optimal solution of the original problem (2.26). It is

worth mentioning that while this solution approach can be implemented in a distributed

manner, it still demands message passing to calculate and exchange the parameters Aq’s.

When the design setting is to jointly minimize the power consumption, the joint opti-
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mization for CoMP under the IC mode can be stated as

minimize
Q1,...,QK

Q∑
q=1

ωqTr {Qq} (2.29)

subject to
∣∣I+HH

qqR
−1
q (Q−q)HqqQq

∣∣ ≥ Rmin
q , ∀q.

Similar to problem (2.26), this optimization is nonconvex, except for the MISO case, i.e,

Nq = 1,∀q. For that case, the work in [10] showed that the optimal beamformers (precoders)

can be found in a distributed manner. Nonetheless, the distributed implementation of

the algorithm proposed in [10] comes with several requirements, including perfect channel

reciprocals, instant signaling exchanges, and synchronization among the coordinated BSs.

To alleviate these drawbacks, we shall consider a new game with pricing consideration that

retains the advantages of the multicell game in CoMP with IA mode later in Chapter 3.

2.3 Concluding Remarks

In summary, this section has discussed various linear and nonlinear precoding designs in

a single-cell network and examined how these designs have been adopted to the context

of CoMP. The key aspect of precoding designs in a CoMP system is the consideration of

the effect of ICI to the overall system performance. When CoMP is deployed under the IA

mode, it is important to examine how each BS strategically adapts its precoding strategy

accordingly to the amount of ICI at its connected MS. When CoMP is operating in the IC

mode, the main concern is the joint control of the ICI by means of precoding in order to

optimize the overall system performance.

It is worth mentioning that most of the related works in literature study the CoMP

system with one MS per cell. Only a limited number of works, such as [9,10,58], considered a

CoMP system with multiple MSs at each cell for the IC mode. It is observed that no work in

literature has provided a thorough overview on how the ICI affects the multiuser precoding

process in a CoMP system. In addition, while research on single-cell precoding techniques

is quite plentiful, as previously mentioned in this section, many of these techniques do not

have a counterpart version for a CoMP system in the presence of ICI. These observations

motivate us to study the precoding designs for a CoMP system under a more general

setting with multiple MSs per cell, and non-homogeneous channel and noise conditions at
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the MSs. In this setting, each BS has to take into account the resource allocation between

its connected MSs and the signaling with other coordinated BSs in the system as well. In

addition, each BS should be able to determine its precoders in fully distributed manner.

How these factors impact on the precoding process at each coordinated BS are the main

concerns of this research.
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Chapter 3

Multiuser Downlink Beamforming in

Multicell Wireless Systems: A Game

Theoretical Approach

3.1 Introduction

Recently, the study of power control in a mutual interference multiuser network using game

theory has attracted considerable research attention. By considering the multiuser system

as a strategic noncooperative game (SNG), each player (a wireless device) greedily adapts its

strategy to maximize its own utility, given the strategies from other players [11,38–48]. In

general, these works focus on studying the existence and uniqueness of the stable operating

point of the system, i.e., the Nash Equilibrium (NE). The uplink power control problem in

a single-cell code-division multiple-access (CDMA) data system with multiple competing

users was studied in [38,39], where the utility function was defined as the ratio of throughput

to transmit power. A pricing mechanism was investigated in [39] to obtain a more efficient

solution of the power control game. In orthogonal frequency division multiplexing (OFDM)

system over a shared band, the work in [11] has inspired various other works on the IWF

algorithm, such as [41–45] with sum-rate as the utility function, or [46] with transmit power

The materials presented in Chapter 3 have been presented at the 2010 IEEE Global Communications
Conference in Miami, FL, USA [59], the 2011 IEEE Global Communications Conference in Houston, TX,
USA [60], published in the IEEE Transactions on Signal Processing [61], and accepted for publication in
the IET Communications [62].
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as the utility function. More recently, the IWF game has also been considered in [63] for a

system utilizing both protected and shared bands.

In multiple antenna systems, the work in [47] considered a multicell system, where each

cell consists of one multiple-antenna base-station (BS) and one single antenna mobile-

station (MS). The objective of [47] was to study the precoding beamforming vector at

the two BSs in competitive and cooperative manners. In the multiuser MIMO channels,

the work in [48] studied the competitive precoding design, where each player wished to

maximize its mutual information. It is to be noted that these works only considered the

system where each transmitter (base-station) communicates with only one receiver (mobile-

station).

Inspired by the mentioned works, this chapter considers a game theoretical approach

to study the competitive precoding design in a multiuser multicell system, where each BS

concurrently serves multiple MSs (or users). Sharing the same frequency band, the BS

of each cell wishes to design the optimal downlink beamformers for its users in order to

minimize its transmit power, given a set of target signal-to-interference-plus-noise ratios

(SINRs) for the users in its cell. Under a similar setup, the work in [64] studied scheduling

schemes to handle the ICI and provided a quality of service (QoS) guaranteed in the form

of packet error rate. Multicell downlink beamforming with coordination was considered

in [10], where the total weighted transmit power across multiple BSs is jointly minimized.

Via the concept of uplink-downlink duality, it is shown in [10] that such a jointly optimal

design can be implemented in a distributed manner under certain requirements, including

perfect channel reciprocal from each BS to each MS (not necessarily in the same cell) and

synchronization among the BSs. These requirements, which may be difficult to meet in

practice, are the drawbacks of the distributed implementation in the coordinated design.

Conversely, in the competitive design, where the multicell beamformers are devised on

per-cell basis with no centralized control, these requirements can be alleviated.

Using the game-theory framework, we establish the best response strategy of a cell,

given the beamforming strategies from other cells. Then, it is shown that such best response

strategy is a standard function [51],1 which guarantees the uniqueness of the NE and the

convergence of the distributed algorithm. This is the distinction of this power minimization

game, compared to typical n-person concave games in an OFDM system with WF as

1The framework of standard functions, proposed by Yates [51], shall be discussed for our context in
Section 3.3.
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the optimal strategy [11, 41–44]. In addition, necessary and sufficient conditions for the

existence of the NE are also given. A comparison to the fully coordinated multicell downlink

beamforming design is then presented in this work.

It is worth mentioning that the NE of the multicell game needs not to be Pareto-optimal,

i.e., it may not stay in the surface established by the coordinated design. Moreover, it may

happen that a beamformer design in one cell is highly correlated to the channel of the

other cells, which then causes significant ICI. To avoid this undesired effect, we consider

a new multicell downlink beamforming game with pricing consideration, where each BS

voluntarily attempts to minimize the interference induced to other cells. This pricing

technique allows a BS to steer its beamformers in a more cooperative way, which results in

a more Pareto-efficient NE. The characterization of the new game’s NE reveals that under

certain conditions, the new NE point is able to approach the performance established by

the coordinated design, while retaining the distributed nature of the SNG.

3.2 System Model

Fig. 3.1 An example of a multicell system with 3 base-stations and 2 users
per cell.

We consider a multiuser downlink beamforming system with Q separate cells oper-
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ating on the same frequency channel, as illustrated in Figure 3.1. In each cell, one

multiple-antenna BS is concurrently sending independent information to several remote

single-antenna MSs. Let Ω = {1, . . . , Q} denote the set of the cells (players), and define

Ω−q = Ω\{q}. For simplicity of presentation, it is assumed that each BS is equipped with

M antennas, and is serving K MSs. We note that each user (MS) is now subject to the

co-channel interference from other cells (ICI), in addition to the interference caused by the

signals intended for other users in the same cell (intra-cell interference). In a competitive

design for this multicell system, it is assumed that each BS has full knowledge of the down-

link channels within its cell, but not the inter-cell channels. Thus, each BS is only able

to manage the intra-cell interference. On the other hand, the BS treats the ICI as back-

ground noise. In the later parts of this work, a BS may possess the full or partial channel

information to the users in other cells. The additional channel knowledge then allows a BS

to control the ICI as well.

Considering the transmission at a particular cell, say cell-q, its downlink channel can

be modeled as

yqi = hH
qqi
xq +

Q∑
m̸=q

hH
mqi

xm + zqi , (3.1)

where xm is an M × 1 complex vector representing the transmitted signal at BS-m, h∗
mqi

is

an M × 1 complex channel vector from BS-m to user-i of cell-q, yqi represents the received

signal at user-i, and zqi is CN (0, σ2). It is assumed that the channel vector h∗
qqi

is known

at both the BS and user-i of cell-q, whereas the cross-cell channel hmqi ,m ̸= q is unknown.

In a beamforming design, the transmitted signal xq is of the form

xq =
K∑
i=1

xqiwqi , (3.2)

where xqi is a complex scalar representing the signal intended for user-i, and wqi is an

M × 1 beamforming vector for user-i. Without loss of generality, let E[|xqi|] = 1. It is easy

to verify that the SINR at user-i of cell-q is

SINRqi =

∣∣wH
qi
hqqi

∣∣2
K∑
j ̸=i

∣∣wH
qj
hqqi

∣∣2 + Q∑
m̸=q

K∑
j=1

∣∣wH
mj
hmqi

∣∣2 + σ2

. (3.3)
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Note that the received signal at user-i of cell-q is corrupted by the intra-cell interference∑K
j ̸=i

∣∣wH
qj
hqqi

∣∣2, the ICI∑Q
m̸=q

∑K
j=1

∣∣wH
mj
hmqi

∣∣2, as well as the AWGN. Although the chan-

nel state information from other cells is not known at both the users and BS of cell-q, each

user can measure its total interference and report back to the BS. The BS, having known

the channel to the users in its cell, can determine the total ICI plus AWGN at each user.

3.3 The Multicell Downlink Beamforming Game

3.3.1 Problem Formulation

In the first part of this work, we are interested in formulating the multicell downlink

beamforming design within the framework of game theory. In particular, we consider a

SNG, where the players are the cells and the payoff functions are the transmit powers of

the BSs. More specifically, each player competes with each other by choosing the downlink

beamformer design that greedily minimizes its own transmit power subject to a given set

of target SINRs at the users within its cell. Each channel is assumed to vary sufficiently

slowly such that it can be considered fixed while the game is being played.

Define the precoding matrix Wq = [wq1 , . . . ,wqK ] as the strategy at BS-q, and W−q

as the precoding strategy of all the BSs, except BS-q. The transmit power at BS-q, is

then given by ∥Wq∥2F . Further define the set of admissible beamforming strategies Wq ∈
Pq(W−q) of cell-q as

Pq(W−q) =
{
Wq ∈ CM×K : SINRqi(Wq,W−q) ≥ γqi , ∀i

}
,

where γqi is the target SINR at user-i of cell-q.

At cell-q, denote the total ICI plus background noise (IPN) at the ith user as r−qi(W−q) =∑Q
m̸=q

∑K
j=1

∣∣wH
mj
hmqi

∣∣2 + σ2 =
∑Q

m̸=q

∥∥WH
mhmqi

∥∥2 + σ2. Furthermore, denote r−q =

[r−q1 , . . . , r−qK ]
T . Note that the set of feasible strategies P(W−q) of cell-q depends on

the beamforming strategies W−q of all the other cells. Mathematically, the corresponding

game has the following structure

G =
(
Ω, {Pq(W−q)}q∈Ω , {tq(Wq)}q∈Ω

)
,



30 Multiuser Downlink Beamforming in Multicell Wireless Systems

where tq(Wq) =
∥∥Wq

∥∥2
F
is the transmit power at BS-q.2 Given the beamforming design

of the others, reflected by the IPN vector r−q, the optimal or best response strategy of the

qth BS is the solution to the following optimization problem

minimize
Wq

∥∥Wq

∥∥2
F

(3.4)

subject to

∣∣wH
qi
hqqi

∣∣2∑K
j ̸=i

∣∣wH
qj
hqqi

∣∣2 + r−qi

≥ γqi , ∀i.

We note that there are several numerical approaches to find the optimal solution to this

downlink beamforming problem, as mentioned in Chapter 2. In a multicell configuration,

the problem arisen here is when one player changes its beamforming matrix, the other

players also need to change their own beamforming matrices in order to achieve its target

SINRs. Our interest is to investigate whether game G eventually converges into a stable

point, i.e., an NE; and if an NE exists, whether its uniqueness hold. A feasible strategy

profile W⋆ = {W⋆
q}

Q
q=1 is an NE of game G if

tq(W
⋆
q) ≤ tq(Wq), ∀Wq ∈ Pq(W

⋆
−q), ∀q ∈ Ω. (3.5)

At the NE point, given the beamforming matrices from other cells, a BS does not have

the incentive to unilaterally change its own beamforming matrix, i.e., it will consume more

power to obtain the same SINR targets. In the following sections, by first studying the

best response strategy of each player, the NE of game G is subsequently characterized.

3.3.2 The Best Response Strategy

In this section, we first present some claims to simplify the analysis of the game and

characterize the best response strategy.

Claim 3.1. If W⋆
q is the optimal beamforming strategy for cell-q, then W⋆

qR, where R =

diag
(
ejθ1 , . . . , ejθK

)
, ∀θ1, . . . , θK is also optimal.

This claim stems from the fact that the effective SINR at each user is invariant to a

constant phase change of the beamforming vector of any other user.

2According to recent use, this game may be referred to as a generalized Nash equilibrium problem where
the admissible strategy set of a player depends on the other players’ strategy [46].
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Claim 3.2. With unlimited transmit power, the feasibility of the optimization problem

(3.4) at cell-q is only dependent on the channel hqq1 , . . . ,hqqK and the set of target SINRs

γq1 , . . . , γqK . It is independent of the IPN vector r−q > 0.

This claim comes directly from Proposition 1 in [19], which shows that the rank of the

matrix Hq = [hqq1 , . . . ,hqqK ] determines the feasibility of the optimization problem (3.4).

In addition, when Hq is full-rank, any set of target SINRs γq1 , . . . , γqK is feasible. In this

work, we assume that Hq is full-rank, ∀q.
It is to be noted that Claim 3.2 is only applicable where no power constraint is imposed

at the BS. In practice, there exists a power bound at the BS, which then affects the fea-

sibility of the QoS problem (3.4). In this work, we relax this power constraint with the

assumption that the power limit at each BS is high enough to accommodate the transmis-

sions to its connected MSs at the targeted QoS. Nonetheless, it is possible that a bounded

feasible solution to the whole multicell system might not be found. Thus, our focus in this

work is on the study of the boundedness and existence of the NE.

Claim 3.3. For two different IPN vectors at cell-q, r−q and r̄−q, the optimal beamforming

vector w⋆
qi
, corresponding to r−q, is a scaled version of the optimal beamforming vector w̄⋆

qi
,

corresponding to r̄−q.

Proof. It is first observed that the IPN components in r−q are scalars, which therefore

should not impact on the directions of the beamformers at BS-q. To support this observa-

tion, we revisit the dual uplink problem of problem (3.4), which turns out to be [21]

maximize
λq1 ,...,λqK

K∑
i=1

λqir−qi (3.6)

subject to
K∑
j ̸=i

λqjhqqjh
H
qqj

+ I ≽ λqi

γqi
hqqih

H
qqi
, ∀i.

This optimization is then equivalent to the dual uplink problem [21]

minimize
λq1 ,...,λqK
wq1 ,...,wqK

K∑
i=1

λqir−qi (3.7)

subject to
λqi

∣∣ŵH
qi
hqqi

∣∣2∑K
j ̸=i λqj

∣∣ŵH
qi
hqqj

∣∣2 + ŵH
qi
ŵqi

≥ γqi , ∀i,
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where the optimization is over a weighted sum-power of the uplink powers λqi ’s and the

receive beamformer vectors ŵqi ’s. It is to be noted that the optimal uplink power λ⋆
qi
is only

dictated by the constraints, but not the objective function. As the constraints are met with

equality at optimality, the solution of λqi can be obtained by the fixed point iteration [51]

λ(n+1)
qi

=
γqi

1 + γqi
· 1

hH
qi

(∑K
j=1 λ

(n)
qj hqqjh

H
qqj

+ I
)−1

hqi

. (3.8)

The optimal receive beamformer vector ŵ⋆
qi

is the minimum mean square error (MMSE)

receiver, i.e., ŵ⋆
qi
=
(∑K

j=1 λ
⋆
qj
hqqjh

H
qqj

+ I
)−1

hqqi . Clearly, the optimal uplink power λ⋆
qi

and the optimal receive beamformer ŵ⋆
qi

are independent of r−qi . The optimal downlink

beamformer vectors w⋆
qi

then can be found to be a scaled version of the uplink receive

beamformer ŵ⋆
qi

[19]. Thus, both the optimal beamforming vector w⋆
qi
, corresponding to

r−q, and the vector w̄⋆
qi
, corresponding to r̄−q, are scaled versions of ŵqi . This concludes

the proof for this claim.

From Claim 3.3, it is to be noted that whenever the IPN vector r−q is changed, BS-q

only needs to adjust the allocated power for each user, but not the beam patterns to its

users.3 Thus, BS-q can determine its beam pattern first, and then allocate the appropriate

power to each user subject to the ICI in r−q.

The optimal beam patterns at each cell can be determined by solving problem (3.4) in

the absence of ICI, which is

minimize
Wq

K∑
i=1

∥∥wqi

∥∥2 (3.9)

subject to

∣∣wH
qi
hqqi

∣∣2∑K
j ̸=i

∣∣wH
qj
hqqi

∣∣2 + σ2
≥ γqi , ∀i.

This problem can be easily solved by the techniques mentioned in the previous section.

The beamforming pattern for each user in cell-q is determined as w̃qi = wqi/∥wqi∥. By

3By beam pattern, we mean the norm-1 wqi/∥wqi∥.
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Claim 3.3, we can restate the optimization problem (3.4) as

minimize
pq1 ,...,pqK

K∑
i=1

pqi (3.10)

subject to
pqi
∣∣w̃H

qi
hqqi

∣∣2∑K
j ̸=i pqj

∣∣w̃H
qj
hqqi

∣∣2 + r−qi

≥ γqi , ∀i,

pi ≥ 0, ∀i, (3.11)

which is reduced back to a power allocation problem, where pqi is the allocated power for

user-i. Denote pq = (pqi , . . . , pqK ), p = (p1, . . . ,pQ), and p−q = (p1, . . . ,pq−1,pq+1, . . . ,pQ).

Note that the strategy set of player-q is redefined as

Pq(p−q) =
{
pq ∈ RK

+ : SINRqi(pq,p−q) ≥ γqi , ∀i
}
. (3.12)

After obtaining the optimal solution p⋆qi of problem (3.10), the optimal beamforming vectors

corresponding to r−q are
√
p⋆qiw̃qi . The following claim presents the analytical solution to

(3.10).

Claim 3.4. The optimal solution of (3.10), p⋆
q = [p⋆q1 , . . . , p

⋆
qK
]T , is given by

p⋆
q = G−1

q r−q, (3.13)

where Gq ∈ RK×K, defined as [Gq]i,i = (1/γqi)
∣∣w̃H

qi
hqqi

∣∣2 and [Gq]i,j = −
∣∣w̃H

qj
hqqi

∣∣2 if i ̸= j,

is invertible. Furthermore, p⋆
q > 0, ∀r−q > 0.

Proof. Since all the SINR constraints in (3.10) are met with equality at optimality, they

are equivalent to

p⋆qi

∣∣w̃H
qi
hqqi

∣∣2
γqi

−
K∑
j ̸=i

p⋆qj
∣∣w̃H

qj
hqqi

∣∣2 = r−qi , i = 1, . . . , K.

The solution of this set of K equations with K variables are the optimal solution of (3.10).

Rewriting these K equations in matrix form, one has Gqp
⋆
q = r−q. From Claim 3.2, as the

problem (3.10) is always feasible ∀r−q > 0, Gq has to be invertible, and p⋆
q = G−1

q r−q > 0

is uniquely defined, ∀r−q > 0.
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We proceed to denote by Gmq ∈ RK×K ,m ̸= q the ICI matrix from cell-m to cell-q,

where [Gmq]i,j =
∣∣w̃H

mj
hmqi

∣∣2. Then Gmqpm is the interference vector caused by BS-m to

the K users of cell-q. Thus, one has r−q =
∑Q

m ̸=q Gmqpm + 1σ2.

From Claim 3.4, the best response strategy of the qth cell subject to the strategy of

Ω−q is

p⋆
q = BRq

(
p−q

)
= G−1

q

(
Q∑

m̸=q

Gmqpm + 1σ2

)
, ∀q. (3.14)

The NEs of game G can now be redefined as the intersection points of the BRs, i.e.,

p⋆
q = G−1

q

(
Q∑

m̸=q

Gmqp
⋆
m + 1σ2

)
, ∀q. (3.15)

The next lemma shows that the best response function in (3.14) is standard [51], which

guarantees the uniqueness of the NE if such NE exists [65].

Lemma 3.1. The best response function is a standard function.

Proof. First, define p = [pT
1 , . . . ,p

T
Q]

T , then BRq(p) , BRq

(
p−q

)
. We need to show that

the best response function BRq(p) meets the three requirements of a standard function:

1. Positivity: for any p ≥ 0, as Gmq is a positive matrix, we have
∑Q

m̸=q Gmqpm+1σ2 >

0,∀q. Thus, BRq(p) = G−1
q

(∑Q
m̸=q Gmqpm + 1σ2

)
> 0, ∀q, as a result from Claim

3.4.

2. Monotonicity: for p ≥ p′, then

BRq(p)− BRq(p
′) = G−1

q

[
Q∑

m̸=q

Gmq (pm − p′
m)

]
≥ 0, ∀q

as a result from Claim 3.4 and each pm − p′
m ≥ 0.

3. Scalability: ∀ϵ > 1, ∀p ≥ 0, one has

ϵBRq(p)− BRq(ϵp) = ϵG−1
q 1σ2 −G−1

q 1σ2 = (ϵ− 1)G−1
q 1σ2 > 0.
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Since BRq(p), q = 1, . . . , Q, are standard functions, the iteration p
(t+1)
q = BRq(p

(t)), q =

1, . . . , Q, will converge from any starting point p(0) > 0 to a unique fixed point (when it

exists) [51], which is the NE of game G [65]. In addition, the iterative update can be

implemented in a fully asynchronous manner among the cells. It is to be noted that due to

the monotonicity of the standard function, if the fixed point does not exist, the transmit

power at each BS will increase without bound. To this end, one sufficient condition and one

necessary condition guaranteeing the boundedness of the NE are examined. Such conditions

equivalently guarantee the existence and uniqueness of the game’s NE.

3.3.3 A Sufficient Condition for the Existence and Uniqueness of the NE

In this section, we consider the best response dynamic of the game as a mapping process.

A sufficient condition is then presented such that the mapping is a contraction, which

guarantees the existence of the fixed-point of the mapping, i.e., the NE of game G. We

summarize the obtained result in the following proposition.

Proposition 3.1. The NE of game G exists if the spectral radius

(C) : ρ(S) < 1, (3.16)

where the square matrix S ∈ RQ×Q is defined as

[S]q,m =

{
0, if m = q∥∥G−1

q Gmq

∥∥
F
, if m ̸= q.

(3.17)

Proof. Let Tq(p) = BRq(p) and T(p) =
(
BRq(p)

)
q∈Ω. Since Tq(p) is a mapping from

RKQ
+ onto Pq(p−q), which is a subset of RK

+ , T(p) is a mapping from RKQ
+ onto a Cartesian

product of Q RK
+ sets, i.e., RKQ

+ . For some w = [w1, . . . , wQ]
T > 0, the mapping T(p) is

a block-contraction of modulus α, with respect to the norm ∥ · ∥w∞,block, if there exists a

non-negative constant α < 1 such that4

∥T(p)−T(p′)∥w2,block ≤ α ∥p− p′∥w2,block , ∀p,p
′ ≥ 0. (3.18)

The condition α < 1 is sufficient to guarantee the existence and uniqueness of the

4The definitions of vector norms and matrix norms, and the concept of contraction mapping are given
in Appendix C.
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fixed point p = T(p) as well as the convergence of the mapping to the fixed point. It

is worth mentioning that this property has been commonly applied to the analysis of

games with best response dynamics, such as the well-known IWF game in a multi-channel

system [41, 43, 44, 48]. To this end, this contraction mapping property is exploited to

establish a sufficient condition on the boundedness of the power update in game G.
Let eTq =

∥∥Tq(p)−Tq(p
′)
∥∥
2
, and eq =

∥∥pq − p′
q

∥∥
2
, then

eTq =
∥∥BRq(p)− BRq(p

′)
∥∥
2

=

∥∥∥∥∥G−1
q

[
Q∑

m̸=q

Gmq (pm − p′
m)

]∥∥∥∥∥
2

≤
Q∑

m̸=q

∥∥G−1
q Gmq

∥∥ ∥pm − p′
m∥2 , (3.19)

where the inequality is satisfied if the matrix norm ∥·∥ applied toG−1
q Gmq is consistent [66].

Here, we can use the Frobenius norm ∥ · ∥F since it is consistent and easy to compute.

Define the vectors eT = [eT1 , . . . , eTQ
]T and e = [e1, . . . , eQ]

T . Furthermore, define the

square matrix S ∈ RQ×Q, where

[S]q,m =

{
0, if m = q∥∥G−1

q Gmq

∥∥
F
, if m ̸= q

. (3.20)

Then, one has

eT ≤ Se. (3.21)

Thus,

∥eT∥w∞,vec ≤ ∥Se∥w∞,vec ≤ ∥S∥w∞,mat∥e∥w∞,vec, (3.22)

as the induced ∞-norm ∥ · ∥w∞,mat is consistent [66]. Then, one has

∥∥T(p)−T(p′)
∥∥w
2,block

= max
q∈Ω

∥BRq(p)− BRq(p
′)∥2

wq

= ∥eT∥w∞,vec

≤ ∥S∥w∞,mat∥e∥w∞,vec

= ∥S∥w∞,mat ∥p− p′∥w2,block . (3.23)
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Thus, if ∥S∥w∞,mat < 1, the existence and the convergence to the fixed point are guar-

anteed because the mapping in (3.23) is a contraction. It is to be noted that if S is a

non-negative matrix, there exists a positive vector w such that [67]

∥S∥w∞,mat < 1 ⇐⇒ ρ(S) < 1. (3.24)

Remark 3.1: A physical interpretation of the sufficient condition (C) is as follows.

Assuming the path-loss fading model hmqi = h̄mqid
−β
mqi

, where h̄mqi contains normalized

i.i.d. CN (0, 1) channel gains, dmqi is the distance between BS-m to user-i of cell-q, and

β is the path-loss exponent. When the distance dmqi increases, the cross channel gains

hmqi , m ̸= q are smaller, which shrinks the elements in the cross interference matrix Gmq.

Thus, the positive off-diagonal elements of S, which are the Frobenius norm of G−1
q Gmq’s,

also become smaller. This results in a smaller spectral radius of S. Thus, the more apart

a MS from the BSs of other cells, the higher chance of ρ(S) being less than 1, which then

guarantees the existence and uniqueness of the NE.

It is to be noted that while the sufficient condition (C) is obtained from the contraction

mapping property of the power update, the direct characterization of the NE can be utilized

to draw the necessary condition of the NE existence. We consider this necessary condition

in the following section.

3.3.4 The Necessary Condition for the Existence and Uniqueness of the NE

This section examines the necessary condition for the existence and uniqueness of the NE

of game G. Before proceeding, we provide some definitions of related mathematical terms

to be used in the section.

Definition 3.1. [68,69] A square matrix A is a Z-matrix if all of its off-diagonal elements

are non-positive. A square matrix A is a P-matrix if all of its principal minors are positive.

A square matrix that is both a Z-matrix and a P-matrix is called an M-matrix.

Besides the above definition, there are several equivalent characterizations of an M-

matrix [68]. It is to be noted that if a matrix is an M-matrix, it is invertible and the

inverse is a positive matrix [68].
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Proposition 3.2. The NE of game G exists if and only if the following matrix

(C1) : G =


G1 −G21 . . . −GQ1

−G12 G2 . . . −GQ2

...
...

. . .
...

−G1Q −G2Q . . . GQ

 (3.25)

is an M-matrix.

Proof. First, if the NE of game G exists, then an intersection point of the BR functions

must exist. At the NE, (3.15) is equivalent to

Gqp
⋆
q −

Q∑
m̸=q

Gmqp
⋆
m = 1σ2, ∀q.

Reorganizing the above set of equations into a matrix form, one has

Gp⋆ = 1σ2,

where G is previously defined. Note that G is a Z-matrix, as its off-diagonal elements are

all non-positive. Since there exists p⋆ > 0 to make Gp⋆ = 1σ2 > 0, this implies G being

an M-matrix by its characterization (Condition I28, Theorem 6.2.3 in [68]).

Conversely, if G is an M-matrix, its inverse exists and is a positive matrix [68]. Thus,

there exists a vector p⋆ = G−11σ2 > 0, and p⋆ satisfies the condition of being an intersec-

tion point of the BR functions in (3.15). As a result, an NE must exist.

As previously mentioned, there are various characterizations of an M-matrix [68] that

one can utilize to verify whether matrix G is one of the type.

3.4 A Comparison to the Coordinated Design

In Section 3.3, we considered the fully decentralized approach in the multi-cell downlink

design and established the NE of the multicell precoding game. However, it is well-known

that the NE need not be Pareto-efficient [52]. Via the coordination among the BSs, signifi-

cant power reduction can be obtained by jointly designing all the beamformers at the same
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time. Nonetheless, this advantage may come with the cost of message passing among the

BSs as explained later in this section. In the following, we review such a fully coordinated

multicell downlink beamforming system [10], where the weighted total transmit power of

all the cells is jointly minimized. A comparison between the two designs is presented in the

end of the section.

Let uqi be the beamforming vector for user-i of cell-q with the coordinated design, and

let Uq = [uq1 , . . . ,uqK ]. The problem of jointly minimizing the weighted total transmit

power of the Q cells is stated as follows

minimize
U1,...,UQ

Q∑
q=1

ωq

∥∥Uq

∥∥2
F

(3.26)

subject to

∣∣uH
qi
hqqi

∣∣2
K∑
j ̸=i

∣∣uH
qj
hqqi

∣∣2 + Q∑
m̸=q

K∑
j=1

∣∣uH
mj
hmqi

∣∣2 + σ2

≥ γqi ,

where ωq is the weight factor at BS-q, and
∑Q

q=1 ωq = 1. For a given ω = [ω1, . . . , ωQ] ≥ 0,

the optimal solution to (3.26) represents an optimal trade-off point between the cells’ power

consumptions. Certainly, this point is Pareto-optimal, i.e., one cannot further reduce the

power consumption at one cell without increasing the power consumption at (one or more)

other cells.

The optimization problem (3.26) is convex, since the objective function is convex and the

SINR constraints can be transformed into convex second order conic (SOC) constraints [10].

Thus, its optimal solution can be obtained using any conic solution package or standard

convex optimization algorithm. This approach, however, is fully centralized. On the other

hand, by exploiting the dual problem, this problem can be solved in a distributed fashion

with message passing among the BSs. Via the Lagrangian technique, the dual problem of

(3.26) is equivalent to the virtual dual uplink problem [10]

minimize
{νqi},{ûqi}

Q∑
q=1

K∑
i=1

νqiσ
2 (3.27)

subject to
νqi
∣∣ûH

qi
hqqi

∣∣2
Q∑

m=1

K∑
j=1

νmj

∣∣ûH
qi
hqmj

∣∣+ ωqûH
qi
ûqi

≥ γqi
1 + γqi

,
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where the optimization is taken over the sum transmit power of the uplink powers νqi ’s and

the receive beamformer vectors ûqi ’s. Note that the optimal solution of the uplink powers

νqi ’s can be obtained as a unique fixed point of the following iteration [10]

ν(n+1)
qi

=
γqi

1 + γqi
· 1

hH
qqi

(
Σq

(
{ν(n)

mj }
))−1

hqqi

(3.28)

with

Σq

(
{ν(n)

mj
}
)
=

Q∑
m=1

K∑
j=1

ν(n)
mj

hqmj
hH
qmj

+ ωqI.

This iteration function is shown to be standard [10], which guarantees its convergence to

a unique solution, if the problem is feasible [51]. It is to be noted that the feasibility study

of this coordinated design has not been done in [10]. However, if the NE of the competitive

design exists, the coordinated design must be feasible. Similar to the single-cell problem,

given the optimal uplink transmit power ν⋆
qi
, the optimal receive beamformers ûqi is the

MMSE receiver, i.e.,

ûqi =
(
Σq

(
{ν⋆

mj
}
))−1

hqqi . (3.29)

In addition, the optimal beamformer of the coordinated design, uqi , can be found as a

scaled version of ûqi by a factor
√
δqi [10], i.e., uqi =

√
δqiûqi . As all the SINR constraints

in (3.26) are met with equality at optimality, substituting uqi =
√
δqiûqi , the KQ SINR

constraints can be written as

δqi

∣∣ûH
qi
hqqi

∣∣2
γqi

−
K∑
j ̸=i

δqj
∣∣ûH

qj
hqqi

∣∣2 − Q∑
m̸=q

K∑
j=1

δmj

∣∣ûH
mj
hmqi

∣∣2 = σ2. (3.30)

In order to find δqi , one needs to solve this set of KQ equations. Define a matrix F of size

KQ×KQ, and its components as

[F]K(q−1)+i,K(m−1)+j =

 |
ûH
qi
hqqi|

2

γqi
, if q = m, i = j

−
∣∣ûH

mj
hmqi

∣∣2 , otherwise
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with i, j = 1, . . . , K, and q,m = 1, . . . , Q. Then, one has

δ = [δ11 , . . . , δ1K , . . . , δQ1 , . . . , δQK
]T = F−11σ2. (3.31)

In summary, with the fully coordinated multicell system, the following three-step algo-

rithm is needed to find the jointly optimal beamformers [10]:

(i) Apply the iteration (3.28) to find the fixed point ν⋆
qi
.

(ii) Find the receive beamformer ûqi for the dual uplink channel as in (3.29).

(iii) Find the scaling factor δqi .

In [10], the authors argued that the above algorithm can be implemented in a distributed

manner under the condition of channel reciprocity. More specifically, when the uplink

and downlink channels are reciprocal of each other, the virtual dual uplink is the real

uplink. Thus, the iteration (3.28) in step (i) can be performed locally at each BS with

local information. In particular, at BS-q, hqqi is typically known and Σq is effectively the

covariance matrix of the received signal in the uplink direction. In step (ii), the receive

beamformer ûqi can be easily obtained. Finally, step (iii) can be implemented iteratively

where each δqi is determined locally to meet its corresponding SINR target (assuming all

other δqi ’s are fixed) until convergence. Overall, the distributed implementation of the

coordinated design requires channel reciprocity and the synchronization among the BSs to

be in the uplink phase or the downlink phase together [10]. It is worth mentioning that

in practice the uplink and downlink channels usually operate in separate frequency bands

in the frequency division duplexing (FDD) mode. Channel reciprocity is therefore hard to

realize.

Obviously, if the condition on channel reciprocity is not true, each BS in the coordinated

design needs to know all the channels from itself to all the MSs in the system. A message

passing scheme among the cells is then required to jointly update the dual variables νqi ’s.

In addition, certain synchronization among the BSs is desired, i.e., step (iii). These are

the main differences to the competitive design considered previously in this chapter, where

the beamforming design is performed locally at each cell without any message exchanges

and synchronization. These differences prompt us to investigate a new game that retains

the advantages of the power minimization game G, i.e., fully distributed implementation,
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no message passing, and no synchronization, and possibly approaches the performance

established by the coordinated design. We address this concern in the next section.

3.5 The Multicell Downlink Beamforming Game with Pricing

3.5.1 Problem Formulation

We begin this section with a numerical example of the power consumption at a two-cell

system with both the coordinated and competitive designs. Considered is a system with

two cells and two MSs per cell with target SINR γqi = 10 (10dB). It is assumed that each

BS is equipped with 3 antennas and the distance between the two BSs is normalized to 2.

Each MS is located between the two BSs at a distance d = 0.6 from its connected BS. All

the intra-cell and inter-cell channel coefficients are generated from i.i.d. Gaussian random

variables, using the path-loss model with the path-loss exponent of 3. The background

noise power σ2 is 0.01. Figure 3.2 displays the power consumption at the two BS with the

competitive design, i.e., the NE point of game G, relatively to the coordinated design. It

should be noted that the power consumption at the cell is lower-bounded by the minimum

power requirement to meet its users’ SINR target, in the absence of ICI. It can be drawn

from the figure that the NE point of the competitive design is relatively inefficient, compared

to the Pareto-optimal curve established by the coordinated design.

An interesting question here is whether one can modify the utility function at each

player such that the game becomes more cooperative and its equilibria possibly lie on the

boundary of the Pareto-optimal trade-off surface, e.g., point “◦” in Figure 3.2. In this

section, we study a new game with pricing consideration, namely game G ′. By introducing

a pricing component to each player’s utility function, the players now voluntarily cooperate

with others by minimizing their inducing interference to the others as well as minimizing

their own transmit power at the same time. In fact, it shall be shown that the point “◦”
can be obtained at the NE of the modified game G ′.

Now, suppose that BS-q has additional information about the channel to the users in
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Fig. 3.2 Power consumption in two cells: competitive design vs. coordinated
design.

other cells, and it performs the following optimization

minimize
Vq

K∑
i=1

∥vqi∥
2 +

Q∑
m̸=q

K∑
j=1

πqmj

∥∥VH
q hqmj

∥∥2 (3.32)

subject to

∣∣vH
qi
hqqi

∣∣2∑K
j ̸=i

∣∣vH
qj
hqqi

∣∣2 + r−qi

≥ γqi , ∀i,

where πqmj
≥ 0 is the pricing factor and

∥∥VH
q hqmj

∥∥2 is the interference at user-j of cell-m,

caused by BS-q.5

It is to be noted that unlike the coordinated design in Section 3.4, this downlink beam-

forming game can be implemented at the system where partial information is available.

More specifically, if the channel to user-i at cell-m is known at BS-q, a pricing factor

5To avoid any confusion with the notation wqi used in Section 3.3 and uqi used in Section 3.4, we denote
vqi as the beamformer for user-i of cell-q in the competitive design with pricing consideration within this
section. Similarly, Vq is used instead of Wq and Uq. Likewise, let qq ∈ RK denote the allocated power
vector for the K users in cell-q, instead of pq in Section 3.3.
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πqmj
> 0 is set to motivate cell-q to adopt a more sociable strategy by steering its beam-

formers to the directions that cause less interference (damage) to other cells. Otherwise,

the pricing factor πqmj
is set to 0. Certainly, the nature of the game being played among

the players is no longer purely competitive. Through pricing, it is possible to improve

system performance by inducing cooperation among the players, and yet maintaining the

decentralized nature of the game. In general, the pricing factors πqmj
should be tuned such

that a largest possible enhancement in the overall system is obtained [39]. In a dynamic

pricing scheme, the pricing factors can be jointly decided and constantly exchanged among

the BSs. However, in order to reduce the system overhead, it is assumed that the prices

are chosen a priori and remain fixed during the game being played. This assumption may

be motivated by a system with a system designer, who informs the prices to the players in

advance.

The game with pricing consideration is practically the same game as G with different

payoff function. Mathematically, the new game is defined as

G ′ =
(
Ω, {Pq(V−q)}q∈Ω , {sq(Vq)}q∈Ω

)
,

where sq(Vq) = tq(Vq) +
Q∑

m̸=q

K∑
j=1

πqmj

∥∥VH
q hqmj

∥∥2 is the utility function at player-q. Our

interest in this part is to study whether game G ′ eventually converges to an NE and whether

the NE is unique. A feasible strategy profile {V⋆
q}

Q
q=1 is an NE of game G ′ if

sq(V
⋆
q) ≤ sq(Vq), ∀Vq ∈ Pq(V

⋆
−q), ∀q ∈ Ω. (3.33)

3.5.2 Existence and Uniqueness of the Nash Equilibrium

This section studies the existence and uniqueness of the NE of the new game G ′. First

of all, given the strategy of other player V−q, we study the optimal strategy for player-q,

i.e., solving the optimization problem (3.32). Note that problem (3.32) is convex, as the

constraints are SOC and the objective function is quadratic. This useful observation enables

us to find its optimal solution via convex optimization. In addition, uplink-downlink duality

can be exploited to devise the optimal solution for this problem. The following theorem

establishes the analytical steps to find the solution.

Theorem 3.1. The optimal transmit beamforming problem (3.32) can be solved via a dual
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virtual uplink channel

minimize
µq1 ,...,µqK
v̂q1 ,...,v̂qK

K∑
i=1

µqir−qi (3.34)

subject to
µqi

∣∣v̂H
qi
hqqi

∣∣2
K∑
j ̸=i

µqj

∣∣v̂H
qi
hqqj

∣∣2 + v̂H
qi
Υq

(
{πqmj

}
)
v̂qi

≥ γqi , ∀i,

where Υq

(
{πqmj

}
)
=

Q∑
m̸=q

K∑
j=1

πqmj
hqmj

hH
qmj

+ I is treated as the noise covariance matrix at

the BS, and the optimization is taken over the weighted sum-power of the uplink power µqi

and the receive beamformer vectors v̂qi. The optimal vqi is a scaled version of the optimal

v̂qi.

Proof. The proof of this theorem is based on the Lagrangian technique and similar to the

one in [21]. The Lagrangian of (3.32) can be reorganized as

Lq(Vq,µq) =
K∑
i=1

µqir−qi +
K∑
i=1

vH
qi

(
Υq

(
{πqmj

}
)
− µqi

γqi
hqqih

H
qqi

+
K∑
j ̸=i

µqjhqqjh
H
qqj

)
vqi ,

where µq = [µq1 , . . . , µqK ]
T ’s are the Lagrangian multipliers associated with SINR con-

straints. The dual objective function is defined as

gq(µq) = min
Vq

Lq(Vq,µq).

Obviously, if Υq

(
{πqmj

}
)
− µqi

γqi
hqqih

H
qqi

+
K∑
j ̸=i

µqjhqqjh
H
qqj

is not positive semi-definite, there

exists a set of vqi to make gq unbounded from below. Thus, the dual problem of (3.32) is

maximize
µq1 ,...,µqK

K∑
i=1

µqir−qi (3.35)

subject to
K∑
j=1

µqjhqqjh
H
qqj

+Υq

(
{πqmj

}
)
≽
(
1 +

1

γqi

)
µqihqqih

H
qqi
, ∀i.

Similar to the technique used to solve the traditional downlink beamforming problem
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[19], the dual problem (3.35) is equivalent to the virtual uplink problem given in (3.34).

Once again, the fixed point iteration can be utilized to find the optimal solution of µqi as

follows

µ(n+1)
qi

=
γqi

1 + γqi
· 1

hH
qqi

(
K∑
j=1

µ
(n)
qj hqqjh

H
qqj

+Υq

(
{πqmj

}
))−1

hqqi

. (3.36)

Using the standard function property, this iteration is guaranteed to converge to a unique

fixed-point if the primal problem (3.32) is feasible.6

The optimal receive beamformer for the virtual uplink channel is indeed the MMSE

receiver

v̂qi =

(
K∑
j=1

µ(n)
qj

hqqjh
H
qqj

+Υq

(
{πqmj

}
))−1

hqqi . (3.37)

In addition, using the similar technique as in [21], it can be shown that vqi is a scaled

version of v̂qi , i.e., vqi =
√
εqiv̂qi where

√
εqi is the scaling factor. One can find the scaling

factor by noticing that all the SINR constraints in (3.32) are met with equality at optimality.

Substitute vqi =
√
εqiv̂qi into the SINR constraints, one can rewrite them as

εqi

∣∣v̂H
qi
hqqi

∣∣2
γqi

−
K∑
j ̸=i

εqj
∣∣v̂H

qj
hqqi

∣∣2 = r−qi , i = 1, . . . , K. (3.38)

Define εq = [εq1 , . . . , εqK ]
T , then εq = E−1r−q, where E ∈ RK×K is defined as [E]i,i =

(1/γqi)
∣∣v̂H

qi
hqqi

∣∣2 and [E]i,j = −
∣∣v̂H

qj
hqqi

∣∣2 if i ̸= j.

Having solved problem (3.32), it is clear that its solution resembles the solution of the

typical downlink beamforming problem (3.4). Thus, many properties of problem (3.4)’s

solution, i.e., Claims 3.1-3.4, also hold. We summarize this observation in the following

lemma.

Lemma 3.2. Given fixed pricing factors πqmj
’s, Claims 3.1-3.4 associated with the solution

of problem (3.4) are also applicable to the solution of problem (3.32).

Proof. Claim 3.1 is straightforward. As the feasibility depends only on the constraints,

if problem (3.4) is feasible, problem (3.32) is also feasible. Thus, Claim 3.2 also holds.

6The proof for this function to be standard is similar to the ones in [19].
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Claim 3.3 comes directly from the fact that the solution vqi of problem (3.4) is a scaled

version of v̂qi given in (3.37). Claim 3.4 also holds, following the same procedure given in

Section 3.3.2. That is, given r−q as the total interference induced by Ω−q plus background

noise and ṽqi as the beam pattern corresponding to πqmj
, the optimal allocated power

vector qq ∈ RK for the K users at BS-q is qq = K−1r−q, where K ∈ RK×K is defined as

[K]i,i = (1/γqi)
∣∣ṽH

qi
hqqi

∣∣2 and [K]i,j = −
∣∣ṽH

qj
hqqi

∣∣2 if i ̸= j.

Denote Kmq ∈ RK×K ,m ̸= q as the ICI matrix, where [Kmq]i,j = |ṽH
mj
hmqi|2. Then, one

has r−q =
∑Q

m̸=q Kmqqm + 1σ2. From Lemma 3.2, subject to the strategy of Ω−q, the best

response strategy of the player-q with pricing consideration is

q⋆
q = BR′

q

(
q−q

)
= K−1

q

(
Q∑

m̸=q

Kmqqm + 1σ2

)
. (3.39)

Lemma 3.3. With pricing consideration, the best response function of player-q is standard.

Proof. The proof is the same as that in Lemma 3.1.

Since the best response function BR′
q

(
q−q

)
is standard, from any starting point q(0),

the iteration q
(t+1)
q = BR′

q

(
q
(t)
−q

)
will surely converge to a fixed point (if it exists), which

is the NE of game G ′. The necessary condition for the existence of the NE in game G ′ is
similar to that of game G, established in Proposition 3.2, i.e., the matrix K ∈ RKQ×KQ, in

the same form as G in (3.25) with Kq and Kmq replacing Gq and Gmq, is an M-matrix.

Likewise, thanks to Proposition 3.1, if ρ(S′) < 1, where S′ ∈ RK×K is defined as [S′]qq = 0

and [S′]q,m =
∥∥K−1

q Kmq

∥∥
F
if m ̸= q, game G ′ is also guaranteed to admit a unique NE.

To this point, one may wonder how efficient the NE of game G ′ is compared to the NE

of game G and the Pareto-optimal trade-off curve. Although this work does not present

a concrete proof to the claim that the NE of game G ′ is more efficient than that of game

G, all simulations show that with right pricing factors, this claim is true. In fact, with a

certain pricing scheme deployed at all the BSs, the NE of game G ′ is able to approach the

Pareto-optimal trade-off curve. The characterization of this pricing scheme is given in the

following.

Theorem 3.2. Given the weight vector ω for the coordinated design, and suppose that ν⋆
qi
’s

are the dual variables that satisfy the iteration (3.28), if the weight factors for game G ′ are
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set as

πqmj
=

ν⋆
mj

ωq

, ∀i, ∀q, (3.40)

the NE of game G ′ is exactly the solution of the coordinated design. That is, the NE lies

on the Pareto-optimal trade-off curve.

Proof. When the weight factors for game G ′ are set as in (3.40), the fixed-point iteration

(3.36) becomes

ωqµ
(n+1)
qi

=
γqi

1 + γqi
· 1

hH
qqi

(
K∑
j=1

ωqµ
(n)
qj hqqjh

H
qqj

+ ωqΥq

(
{ν⋆

mj
/ωq}

))−1

hqqi

. (3.41)

Comparing to fixed-point iteration (3.28), it is obvious that the unique fixed-point of

the above iteration satisfies ωqµ
⋆
qi

= ν⋆
qi
. As a result, v̂qi = ωqûqi . That is, the beam

pattern set for the users of game G ′ is the same as the beam pattern set in the coordinated

design. Thus, it is left to determine that the beamformers of the two designs are indeed the

same. Note that the coordinated design determines the scaling factor δqi to ûqi by either

using matrix inversion, c.f. equation (3.31), or each MS sets a δqi to meet its corresponding

SINR constraint assuming all other δqi ’s are fixed [10]. The convergence of the second

method can be proved by the standard function technique [10], which effectively explains

the convergence to a unique fixed-point. On the other hand, at each time instance, BS-q in

game G ′ determines the allocated powers (equivalently the scaling factors to v̂qi) to satisfy

the SINR constraints at its users. Due to the uniqueness of the fixed-point, the game played

in G ′ has to converge to the same solution as the coordinated design.

Theorem 3.2 is significant in the sense that the fully coordinated design can still be

interpreted as a competitive game with the right pricing scheme. Our next task is to study

how to implement such a pricing scheme, under two game scenarios: (i) game with complete

information and (ii) game with incomplete information.

In a game with complete information, it is assumed that the system designer knows all

the game parameters, including the channels and the QoS requirements. Each BS is also

assumed to fully know its channels to all the MSs. The designer then can exactly decide

the optimal dual variables ν⋆
qi
’s, which are used to determine the optimal prices in (3.40).

As stated in Theorem 3.2, the game with pricing consideration will be Pareto-optimal.
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Interestingly, it has been recently shown in [70] that pricing can allow the system designer

to locate the NE point to any feasible point in a broad class of power allocation games

under complete information. Our result given in Theorem 2 has established a similar result

for the beamforming and power allocation game in a multicell system.

In a game with incomplete information, it is assumed that neither the BSs nor the

system designer fully know all the channels. Thus, implementing the pricing scheme (3.40)

is no longer possible. In this case, the designer may help the BSs to search for good pricing

factors. Here, we employ the same mechanism exploited in [39] due to its simplicity. More

specifically, the designer lets the BSs play game G (no pricing) and obtain the NE. Then,

each BS sets its pricing factors πqmj
to a same value c > 0 (initially large), which is informed

by the designer, and game G ′ is played between the BSs. After dividing the pricing factor

c by a positive factor of ∆c, game G ′ is played again and its NE is re-measured. The

procedure is repeated if the sum of the utility functions at the new equilibrium is smaller

than that of the previous instance. Otherwise, the procedure is stopped and all the pricing

factors are set to the same factor, called cBEST. As shall be shown in the simulation, this

technique performs very well in improving the NE’s efficiency.

3.6 Numerical Results

This section presents some numerical results to validate our findings. In particular, we

compare the feasibility of the coordinated design and the probability of existence of an NE

of games G and G ′. Also compared are the average total transmit powers (of all the cells) of

the three designs. We consider a multicell network as illustrated in Figure 3.3, composed of

3 cells with 2 users per cell. It is assumed that the BSs are equidistant, and their distance

is normalized to 2. The distance between a MS and its serving BS is also set the same, at

d. Of the two MSs at each cell, one is located close to the borders with other cells, whereas

the second one is far away. The same target SINRs are set at each MS, either γqi = 0 dB

or γqi = 10 dB. The AWGN power spectral density σ2 is set at 0.01. The channels from a

BS to a MS are generated from i.i.d. Gaussian random variables using the path-loss model

with the path-loss exponent of β = 3 and the reference distance of 1 corresponding to MSs

at the cell-edge. As we vary the distance d, 10, 000 channel realizations at each value d are

used to plot the probability of the existence of a stable operating point in Figure 3.4 and

the average total transmit power in Figure 3.5.
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BS1 BS2
BS3 MS3-2

MS3-1
MS1-1

MS1-2 MS2-1
MS2-2d

Fig. 3.3 A multicell system configuration with 3 cells, 2 users per cell. Of
the two users at each cell, one stays close to the borders with other cells, one
is far away.

In the competitive design with pricing consideration, it is assumed that each BS also

knows the channels to the MSs that are close to the cell boundary at the other two cells.

For example, base-station BS-1 knows its channels to MS-21 and MS-31. Certainly, these

two MSs are subject to a much higher ICI level from cell-1 than the others. Each BS then

takes advantage of this extra information to improve efficiency of the NE of game G ′ with
pricing. The pricing scheme for games with incomplete information as discussed in Section

3.5 is applied in this simulation.

Figure 3.4 displays the probability of existence of a stable operating point as the function

of the MS-BS distance d by evaluating whether condition (C) is satisfied and numerically

examining the convergence of game G (which matches with condition (C1)), the coordinated

design, and game G ′. From the figure, as the MSs get closer to their BS, a higher probability

of the existence of a stable operating point for all three designs is observed. This is due

to the fact that the stronger intra-cell channels allow a BS to transmit at a lower power

level to meet its target SINRs, which then causes lower ICI. With the competitive design,

a lower level of ICI certainly guarantees a higher probability of existence of an NE. On the

other hand, with the pricing consideration, the whole system may further reduce the ICI.
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Fig. 3.4 Probability of existence of a stable operating point versus d by
evaluating conditions (C) and (C1) and numerically examining the convergence
of game G, the coordinated design, and game G′ to meet the target SINRs:
γqi = 10 dB (dashed lines) and γqi = 0 dB (solid lines).

As a result, the existence probability of game G ′ is higher than that of game G. Finally,

with the coordinated design, where the ICI is fully managed, the feasibility of finding a

solution that meets all the target SINRs is certainly higher than finding one in both games

G and G ′. Note that that conditions (C) and (C1) can be easily examined to verify the

existence of the NE of the competitive design. In case of not meeting conditions (C) or

(C1), one may attempt to switch the network into the design with pricing consideration or

the fully coordinated design to improve the convergence probability of the whole system.

Figure 3.4 also shows that a lower target SINR, which requires lower transmit power (lower

ICI), would induce a higher chance of finding the solutions in all three designs.

Of all cases where game G converges, the total transmit power Ptotal at the 3 BSs with

three designs are averaged and compared in Figure 3.5 in the form of Ptotal/σ
2. Note that

the weight factors ωq’s of the coordinated design are set equal to each other to minimize

the design’s sum transmit power. At small inter-cell MS-BS distances, it can be seen that

the power usages of all the designs are very low and their difference is rather marginal.
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Fig. 3.5 Average total transmit power versus d of the competitive design,
the coordinated design, and the competitive design with pricing consideration
to meet the target SINRs: γqi = 10 dB (dashed lines) and γqi = 0 dB (solid
lines).

Again, this is due to the fact that the intra-cell channels are strong and the ICI is too

small. However, as d increases, the effect of ICI becomes significant. Since the competitive

design does not attempt to control the ICI, its NE point becomes inefficient compared to the

Pareto-optimal frontier established by the coordinated design. On the other hand, should a

BS know the channels to the MSs at other cells, it can alter its strategy by playing the game

with pricing consideration G ′. In fact, using the aforementioned procedure to determine

the pricing factor, the NE of game G ′ is almost Pareto-optimal. It is worth noting that this

result is obtained even thought each BS does not possess full channel knowledge from itself

to all the users.

To illustrate the convergence behaviors of the multicell downlink beamforming games

G and G ′ and compare the transmit powers of the two designs, we select two examples

and display them in Figures 3.6 and 3.7. In both games, it is assumed that all the BSs

perform simultaneous power update at each time instance. The transmit power of each cell

is then displayed after each iteration. The system configuration is the one in Figure 3.3,
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with γqi = 10 dB and d = 0.6.
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Fig. 3.6 A converging example of the downlink beamforming games G and
G′ in a multicell system: the sum power of each cell versus the number of
iterations with ρ(S) = 0.7332, ρ(S′) = 0.6256, and the corresponding matrices
G and K are M-matrices.

In the first example, ρ(S) and ρ(S′) are calculated at 0.7332 and 0.6256, respectively.

The power updates of both games displayed in Figure 3.6 clearly show the convergence

of the two designs. Figure 3.6 also shows the benefit of using the design with pricing

consideration, where the transmit power at each cell is reduced, compared to that of the

purely competitive design. For this particular example, the price is set at 0.1388.

In the second example, ρ(S) and ρ(S′) are calculated at 2.0016 and 0.9815, respectively.

In can be seen from Figure 3.7 that the power updates of game G do not converge. Interest-

ingly, with the price set at 0.551, the design with pricing consideration eventually converges.

This behavior clearly indicates the benefit of adopting a more cooperative strategy at each

cell by exploiting the extra channel information to other cells.



54 Multiuser Downlink Beamforming in Multicell Wireless Systems

0 5 10 15 20 25 30
0

10

20

30

40

50

Number of iterations (Competitive design)

 P
q/σ

2  in
 d

B

Cell−1
Cell−2
Cell−3

0 5 10 15 20 25 30
0

5

10

15

Number of iterations (Competitive design with pricing)

 P
q/σ

2  in
 d

B

Cell−1
Cell−2
Cell−3

Fig. 3.7 An example of the downlink beamforming game that diverges in
game G and but converges in game G′: the sum power of each cell versus the
number of iterations with ρ(S) = 2.0016, and ρ(S′) = 0.9815. In this case, the
corresponding matrix K is an M-matrix, but G is not.

3.7 Concluding Remarks

This chapter has studied the problem of downlink beamformer designs in a multicell system

via game theory. Given the QoS requirements at the users in its cell, each BS determines its

optimal downlink beamformer strategy in a distributed manner, without any coordination

among the cells. At first, we considered a fully competitive game, where each BS greedily

minimizes its transmit power. We have examined necessary and sufficient conditions guar-

anteeing the existence and uniqueness of the NE of the game. In addition, a comparison

between the competitive and coordinated designs was also presented. Finally, to improve

the efficiency of the competitive game, a new game with pricing consideration was studied.

Through the pricing mechanism, each BS can steer its beamformers in a more cooperative

way to reduce its induced ICI to other cells. If each BS knows its channels to all MSs in

the network, the new game is capable of obtaining the Pareto-optimal performance as the

coordinated design, while retaining the distributed nature of a multicell game. Interest-
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ingly, the multicell beamforming game with pricing consideration can also be implemented

with partial inter-cell channel knowledge.
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Chapter 4

Block-Diagonalization Precoding in

Multiuser Multicell MIMO Systems:

Competition and Coordination

4.1 Introduction

In Chapter 3, we investigated multicell precoding designs with the objective of minimizing

the transmit power at the BSs subject to SINR constraints at the MSs. In this chapter,

we consider the multicell precoding designs to maximize the achievable data-rate of the

MSs with power constraints at the BSs. In a MIMO system, space-division multiple-access

(SDMA) can be applied at the BS to concurrently multiplex data streams for multiple

MSs. With appropriate downlink precoding techniques at the BS, SDMA can significantly

improve the system’s spectral efficiency. Downlink precoding for a MIMO system has been

an active area of resaerch for many years. Dirty-paper coding (DPC) [25–28] has been

proved to be the capacity-achieving multiuser precoding strategy. However, due to its high

complexity implementation that involves random nonlinear encoding and decoding, DPC

can only serves a theoretical benchmark. Consequently, linear precoding techniques, such

as zero-forcing (ZF) and block-diagonalization (BD) [34–37], become appealing alternatives

The materials presented in Chapter 4 have been presented at the 2011 IEEE Vehicular Technology
Conference in San Francisco, CA, USA [71], the 2013 IEEE Wireless Communications and Networking
Conference in Shanghai, China [72], and submitted to the IEEE Transactions on Wireless Communications
[73].
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due to their simplicity and good performance. With BD precoding, the transmitted signal

from the BS intended for a particular MS is restricted to be in the null space created by the

downlink channels associated with all the other MSs. Therefore, all inter-user interference

at the MSs can be fully suppressed.

In a multicell system, the multiple BSs can fully cooperate to form a single large system

with distributed antenna elements. This form of cooperation, also termed as network

MIMO, requires all the BSs to share the CSI and data information among themselves via

backhaul links as well as to coordinate their concurrent data information transmissions to

all the MSs. Under the network MIMO context, BD precoding was investigated in [74,75]

with per-base-station power constraints. Specifically, the works in [74, 75] considered a

multicell system where all the BSs form a single large BD precoder to remove all intra-cell

and inter-cell interferences. A modified BD multicell precoding scheme was proposed in [76]

to improve the performance of BD precoding in the low-to-medium signal-to-noise (SNR)

region. While extracting a good performance from the multicell network, the benefits of

network MIMO come at the expense of high complexity in joint precoding/decoding and

ideal backhaul transmissions among the BSs for data and control signaling exchange [3].

Different from the studies in [74–76], this chapter investigates the multicell system

where BD precoding is applied on a per-cell basis. Specifically, we consider the BD pre-

coding schemes for the multicell system under the two operating modes: interference aware

(IA) and interference coordination (IC) [5]. Under these two operating modes, each BS is

required to transmit information data only to the MSs within its cell limits. The reason that

we choose to study the BD precoding on a per-cell basis is due to simple implementation

and good performance at the high SNR region [35].

Under the IA mode, each interference-aware MS shall measure the level of ICI and feed

back this information to its connected BS [5]. Given the strategies from other BSs reflected

by the ICI, each BS selfishly adjusts its precoding strategy to maximize the sum-rate for

its connected MSs. Thus, the multicell system is said to be in competition since the BSs

are competing with each other for the radio resource. Naturally, the IA mode represents a

strategic noncooperative game (SNG) with the BSs being the rational players. The study of

precoding design for the multicell system under the IA mode using game theory is plentiful

in literature [12,47,48,61,71]. In general, these works focus on studying the existence and

uniqueness of the game’s Nash equilibrium (NE). The work in [47] studied the precoding

game of a two-cell MISO system. In the multicell MIMO system, [12, 48] studied the
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competitive precoding design, where each cell selfishly maximizes its mutual information.

It is to be noted that [12,47, 48] only considered the system where each BS communicates

with only one MS. For the case of multiple MSs per cell, [61] studied a multicell SNG

where each BS selfishly minimizes its transmit power. The work in [71] investigated a

SNG where each BS utilizes ZF precoding to maximize the sum-rate to the MSs within

its cell. Both studies in [61, 71] only considered the case of single-antenna MSs. Different

from these works, the consideration of BD precoding in this chapter allows us to examine

a multicell SNG under a more general setting where there are multiple MSs per cell and

each MS is equipped with multiple antennas. In order to characterize the multicell BD

precoding game, we first present the best response strategy at the each BS in a closed-form

WF solution. We then show that this WF best response strategy can be interpreted as a

projection onto a closed and convex set. This interpretation shall allow us to study the

uniqueness of the game’s NE later on. It shall be shown that the game’s NE always exists

and is guaranteed to be unique under a certain condition on the ICI.

Under the IC mode, while each BS only transmits data information to the MSs within

its cell limits, the precoders from all BSs are jointly designed to fully control the ICI [5].

Thus, the multicell system is said to be in coordination since the transmissions from the

BSs are coordinated. In this work, we examine the BD precoding strategy that jointly

maximizes the weighted sum-rate (WSR) of the multicell system under the IC mode. Since

this WSR maximization problem is shown to be nonconvex, it is generally difficult and com-

putationally complex to find its globally optimal solution. Thus, our focus is on proposing

a low-complexity algorithm to approximate the nonconvex WSR maximization into a se-

quence of simpler convex problems. We then show that each of the simpler problems can

be solved separately at the corresponding BS. In particular, each BS attempts to optimize

its BD precoder to maximize the sum-rate for its connected MSs while doing its best in

limiting the ICI induced to other cells through an interference-penalty mechanism. Simu-

lation results show a significant improvement in the network sum-rate by the IC mode over

the IA mode at the high ICI region.

In the latter part of this chapter, we examine the precoding design in a multiuser

multicell where Block-Diagonalization - Dirty-Paper Coding (BD-DPC) is utilized in a

per-cell basis. In BD-DPC, the information signals sent to the multiple users are encoded

in sequence such that the receiver at any user does not see any inter-user interference

due to the use of BD and DPC at the BS [26]. Thus, BD-DPC can take advantage of
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DPC to enhance the performance of BD precoding. Under the IA mode, we attempt to

characterize the NE of the BD-DPC multicell precoding game by examining the conditions

for its existence and uniqueness. It will be shown that the game may have multiple NEs,

depending on the encoding order in the BD-DPC precoding design at each BS. In addition,

the condition for the uniqueness of the BD-DPC multicell precoding game is generally

stricter than that of the BD one. Under the IC mode, we propose a numerical algorithm

to maximize the WSR of the multicell system with BD-DPC precoding. In a conventional

single-cell system, BD-DPC precoding can yield a better sum-rate performance over the

BD precoding. Our thorough numerical simulations then confirm this observation for the

multicell system under both IA and IC modes.

4.2 System Model

We consider a multiuser multicell downlink system with Q separate cells operating on

the same frequency channel. At a particular cell, say cell-q, a multiple-antenna BS is

concurrently sending independent information streams to K remote MSs, each equipped

with multiple receive antennas. Let M and N be the numbers of antennas of the BS and

the ith MS at cell-q, respectively. Denote xq ∈ CM×1 as the transmitted signal vector from

BS-q. Assuming linear precoding at the BS, xq can be represented as xq =
∑K

i=1Wqisqi ,

where Wqi ∈ CM×Dqi is the precoding matrix and sqi ∈ CDqi×1 is the data symbol vector

intended for MS-i. Without loss of generality, we assume E
[
sqis

H
qi

]
= I,∀i,∀q.

Let Hrqi ∈ CN×Mr model the channel coefficients from BS-r to MS-i of cell-q, and zqi
model the zero-mean complex additive Gaussian noise vector with an arbitrary covariance

matrix Zqi . The transmission to MS-i at cell-q can be modeled as

yqi =

Q∑
r=1

Hrqixr + zqi

= HqqiWqisqi +Hqqi

K∑
j ̸=i

Wqjsqj +

Q∑
r ̸=q

Hrqi

K∑
j=1

Wrjsrj + zqi . (4.1)

It is observed from (4.1) that the received signal at MS-i of cell-q comprises of 4 components:

the useful information signal HqqiWqisqi , the intra-cell interference Hqqi

∑K
j ̸=iWqjsqj , the

ICI
∑Q

r ̸=q Hrqi

∑K
j=1Wrjsrj , and the Gaussian noise zqi . In this work, it is assumed that
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each MS can measure its total interference and noise power perfectly and constantly report

back to its connected BS. The BS then utilizes this information to design its precoders

accordingly for its connected MSs.

In the competitive design of this system model, it is assumed that each BS only possesses

full knowledge of the downlink channels to the MSs in its cell, but not the channels to the

MSs in other cells. As a result, the BS cannot control its induced ICI to other cells, which

is then treated as background noise at the MSs. On the contrary, in the coordinated design

of this system model, the BS also possesses the CSI to the MSs in the other cells. This

additional channel knowledge allows the BS to control the ICI as well. Note that the BS

can always fully manage the intra-cell interference within its cell by performing certain

precoding techniques on a per-cell basis. In this work, we focus on the precoding technique

that completely suppresses the intra-cell interference, namely BD precoding for multiple-

antenna MSs [35]. To implement the BD precoding on a per-cell basis, it is assumed that

the total number of receive antennas at the MSs does not exceed the number of transmit

antennas at their connected BS, i.e., KN ≤M, ∀q. If the number of receive antennas at a

cell exceeds the number of transmit antennas, the BS can select a subset of MSs beforehand

using low-complexity selection techniques such as [77,78].

Let Qqi = WqiW
H
qi

be the transmit covariance matrix intended for MS-i of cell-q,

and Qq = {Qqi}
K
i=1 be the precoding profile for K MSs of cell-q. Likewise, let Q−q =

{Q1, . . . ,Qq−1,Qq+1, . . . ,QQ} denote the precoding profile of all cells except cell-q. Denote

by Rqi(Q−q) the covariance matrix of the total IPN at MS-i of cell-q, which is defined as

Rqi(Q−q) =

Q∑
r ̸=q

Hrqi

(
K∑
j=1

Qrj

)
HH

rqi
+ Zqi . (4.2)

With BD precoding applied an a per-cell basis at BS-q, the achievable data rate Rqi to

MS-i is then given by

Rqi(Qq,Q−q) = log
∣∣I+HH

qqi
R−1

qi
(Q−q)HqqiQqi

∣∣ . (4.3)
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4.3 The Multicell Block-Diagonalization Precoding -

Competitive Design

4.3.1 Problem Formulation

This section examines the multicell BD precoding under the competition mode, i.e., the IA

mode, where each BS selfishly designs its BD precoders without any coordination among

the cells. We are interested in formulating this competitive multicell BD precoding design

using the game-theory framework. In particular, we consider a SNG, where the players

are the cells and the payoff functions are the sum-rates of the cells. In each cell, the BS

strategically adapts its BD precoder on a per-cell basis to greedily maximize the sum-rate

to its connected MSs, subject to a constraint on its transmit power.

Let Ω = {1, . . . , Q} be the set of Q players. Define Rq(Qq,Q−q) =
∑K

i=1Rqi(Qq,Q−q)

as the payoff function of player-q. Then, given a strategy profile Q−q from other play-

ers, player-q selfishly maximizes its payoff function by solving the following optimization

problem

maximize
Qq1 ,...,QqK

Rq(Qq,Q−q) (4.4)

subject to
K∑
i=1

Tr{Qqi} ≤ Pq

HqqjQqiH
H
qqj

= 0, ∀j ̸= i

Qqi ≽ 0, ∀i,

where Pq is the power budget at BS-q. To achieve the maximum sum data-rate at cell-q,

it is assumed that the IPN matrix Rqi(Q−q) is perfectly measured at the corresponding

MS-i and reported back to its connected BS. Clearly, the optimization problem (4.4) shows

that the optimal strategy of player-q does depend on the strategies of others. It is to

be noted that the optimization (4.4) is carried with only local information (intra-cell CSI

and signaling between the MSs and its connected BS). Thus, the BD precoding game is

implemented in a fully distributed manner without any signaling exchanges among the BSs.

Due to the constraintsHqqiQqjH
H
qqi

= 0,∀j ̸= i, each column of the precoder matrixWqi

must be in the null space created by Ĥqi = [HT
qq1

, . . . ,HT
qqi−1

,HT
qqi+1

, . . . ,HT
qqK

]T . Suppose
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that one performs the singular value decomposition of the (K − 1)N ×M matrix Ĥqi as

Ĥqi = UqiΣqiV
H
qi
= Uqi

[
Σ̃qi , 0

] [ ṼH
qi

V̂H
qi

]
, (4.5)

where Σ̃qi is diagonal, Uqi and Vqi are unitary matrices, and V̂qi is formed by the last

N̂ , M−(K−1)N columns of Vqi . Then, any precoding covariance matrix Qqi formulated

as V̂qiDqiV̂
H
qi
, where Dqi ≽ 0 is an arbitrary N̂ × N̂ matrix, would make HqqjQqiH

H
qqj

=

0, ∀j ̸= i. Thus, the set of admissible strategies for player-q can be defined as follows:

Sq =
{
Qqi ∈ SM×Mq : Qqi = V̂qiDqiV̂

H
qi
,Dqi ≽ 0,

K∑
i=1

Tr {Dqi} ≤ Pq

}
. (4.6)

Mathematically, the game has the following structure

G =
(
Ω, {Sq}q∈Ω , {Rq}q∈Ω

)
. (4.7)

A NE of game G is defined when

Rq

(
Q⋆

q,Q
⋆
−q

)
≥ Rq

(
Qq,Q

⋆
−q

)
, ∀Qq ∈ Sq, ∀q ∈ Ω. (4.8)

At an NE, given the precoding strategy from other cells, a BS does not have the incentive

to unilaterally change its precoding strategy, i.e., it shall achieve a lower sum-rate with the

same power constraint.

4.3.2 Characterization of the BD Precoding Game’s Nash Equilibrium

In this section, we study the two most fundamental questions in analyzing a SNG: the

existence and uniqueness of the game’s NE. The NE characterization allows us to predict

a stable outcome of the noncooperative BD precoding design in game G. The existence of

a pure NE in game G can be deduced straightforwardly from the work in [79] for N -person

quasi-concave games. First, the strategy set Sq for player-q defined in (4.6) is compact and

convex, ∀q. Second, the utility function Rq(Qq,Q−q) is a continuous function in the profile

of strategies Sq and concave in Qq1 , . . . ,QqK . Thus, Theorem 1 in [79] indicates that there

always exists at least one pure NE in game G.
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In order to study the uniqueness of an NE in game G, we first investigate the best

response strategy at each player. As defined in Sq, the best response strategy of player-q

must be in the form Qqi = V̂qiDqiV̂
H
qi
, ∀i. Let Dq , blk{Dqi}, D = {Dq}q∈Ω. Then, the

best response strategy Dq at BS-q can be obtained from the following optimization problem

maximize
Dq1 ,...,DqK

K∑
i=1

log
∣∣∣I+ V̂H

qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qiDqi

∣∣∣ (4.9)

subject to
K∑
i=1

Tr{Dqi} ≤ Pq

Dqi ≽ 0,∀i,

where R̂qi(D−q) is defined as

R̂qi(D−q) = Rqi(Q−q) =

Q∑
r ̸=q

Hrqi

(
K∑
j=1

V̂rjDrjV̂
H
rj

)
HH

rqi
+ Zqi . (4.10)

By eigen-decomposing V̂H
qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qi = ÛqiΛqiÛ

H
qi
, the optimal solution to

problem (4.9) can be easily obtained from the WF procedure

Dqi , WFqi(D−q) = Ûqi

[
µqI−Λ−1

qi

]+
ÛH

qi
, (4.11)

where the water-level µq is adjusted to meet the power constraint
∑K

i=1Tr
{[

µqI−Λ−1
qi

]+}
=

Pq. Note that as V̂qi only depends on in-cell channels at cell-q, BS-q only needs to strate-

gically adapt its precoding matrices Dqi , ∀i as in (4.11).

While the best response strategy of each player can be obtained in a closed-form so-

lution in (4.11), the nonlinear structure of the WF operator is problematic in analyzing

the uniqueness of the game’s NE. Fortunately, the WF operator can be interpreted as a

projection onto a closed set [48]. As studied in [48] for the case of single-user MIMO WF,

this interpretation is also applicable to the multiuser WF case considered in problem (4.9).

Theorem 4.1. The optimization problem (4.9) is equivalent to the following optimization
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problem

minimize
Dq1 ,...,DqK

K∑
i=1

∥∥∥∥Dqi +
(
V̂H

qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qi

)†
+ cqPN (HqqiV̂qi )

∥∥∥∥2
F

(4.12)

subject to
K∑
i=1

Tr {Dqi} = Pq

Dqi ≽ 0,

where PN (HqqiV̂qi )
is the projection onto the null space of HqqiV̂qi, and cq is an arbitrarily

large constant satisfying cq ≥ Pq +max∀i,∀k[Λqi ]
−1
kk .

Proof. The proof for this theorem is similar to that of Lemma 1 in [48] for the case of

single-user MIMO WF. Given that V̂H
qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qi = ÛqiΛqiÛ

H
qi
, one has

(
V̂H

qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qi

)†
= ÛqiΛ

−1
qi
ÛH

qi
. (4.13)

Note that Ûqi is a N̂ × N unitary matrix, i.e., ÛH
qi
Ûqi = I, and Λqi is a N × N diagonal

matrix. By the assumption that KN ≤ M , i.e., N ≤ N̂ , one may form a unitary matrix

Ǔqi = [Ûqi , Ũqi ], where Ũqi is a N̂ × (N̂ −N) matrix satisfying ÛH
qi
Ũqi = 0 and ŨH

qi
Ũqi =

I. In addition, N (HqqiV̂qi) = N (V̂H
qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qi) implies that PN (HqqiV̂qi )

=

ŨqiŨ
H
qi
. Thus, for a given cq, one has

(
V̂H

qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qi

)†
+ cqPN (HqqiV̂qi )

= ǓqiΛ̌
−1

qi
ǓH

qi
,

where Λ̌qi = blk{Λqi , (1/cq)I}.
The optimization problem (4.12) then can be rewritten as

minimize
Ďq1 ,...,ĎqK

K∑
i=1

∥∥∥Ďqi + Λ̌
−1

qi

∥∥∥2
F

(4.14)

subject to
K∑
i=1

Tr
{
Ďqi

}
= Pq,

Ďqi ≽ 0,

where Ďqi , ǓH
qi
DqiǓqi . Due to the fact the objective function is lower-bounded by diag-
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onal matrices {Ďqi}, the optimal solution set {Ďqi} to problem (4.14) has to be diagonal.

Thus, the optimization (4.14) can be reduced to

minimize
Ďq1 ,...,ĎqK

K∑
i=1

∑
k

([
Ďqi

]
k,k

+
[
Λ̌

−1

qi

]
k,k

)2
(4.15)

subject to
K∑
i=1

∑
k

[Ďqi ]k,k = Pq, [Ďqi ]k,k ≥ 0,

whose (unique) optimal solution has the WF structure such that Ďqi =
[
µqI − Λ̌

−1

qi

]+
,

where µq is the water-level to meet the power constraint
∑K

i=1Tr
{
Ďqi

}
= Pq. Thus, the

optimal solution to the original problem (4.12) is given by

Dqi = Ǔqi

[
µqI− blk

{
Λ−1

qi
, cqI

}]+
ǓH

qi
= Ûqi

[
µqI−Λ−1

qi

]+
ÛH

qi
,

if cq is chosen to be large enough such that [µq − cq]
+ = 0. As suggested in [48], choosing

cq ≥ Pq + max∀i,∀k[Λqi ]
−1
kk is sufficient to meet this requirement. This concludes the proof

for Theorem 4.1.

From Theorem 4.1, the WF solution in (4.11) is indeed the solution of the optimization

problem (4.12). Thus, the block-diagonal WF solution WFq(D−q) , blk
{
WFqi(D−q)

}
,

can be interpreted as a projection

WFq(D−q) =

[
−blk

{(
VH

qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qi

)†
+ cqPN (HqqiV̂qi )

}]
Dq

,

where Dq ,
{
Dqi ∈ SN̂×N̂ :

∑K
i=1Tr{Dqi} = Pq, Di ≽ 0, ∀i

}
is a closed and convex set.

Define the multicell mapping WF(D) = {WFq(D−q)}q∈Ω. Let eWFq =
∥∥WFq

(
D

(1)
−q

)
−

WFq

(
D

(2)
−q

)∥∥
F
and eq =

∥∥D(1)
q −D

(2)
q

∥∥
F
, for any given D(1) ̸= D(2) and D

(1)
q ,D

(2)
q ∈ Dq, ∀q.
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Then,

eWFq =

∥∥∥∥∥
[
−blk

{(
V̂H

qi
HH

qqi
R̂−1

qi
(D

(1)
−q)HqqiV̂qi

)†
+ cqPN (HqqiV̂qi)

}]
Dq

−
[
−blk

{(
V̂H

qi
HH

qqi
R̂−1

qi
(D

(2)
−q)HqqiV̂qi

)†
+ cqPN (HqqiV̂qi )

}]
Dq

∥∥∥∥∥
F

≤
∥∥∥∥blk{−(V̂H

qi
HH

qqi
R̂−1

qi
(D

(1)
−q)HqqiV̂qi

)†}
− blk

{
−
(
V̂H

qi
HH

qqi
R̂−1

qi
(D

(2)
−q)HqqiV̂qi

)†}∥∥∥∥
F

(4.16a)

≤
K∑
i=1

∥∥∥∥(V̂H
qi
HH

qqi
R̂−1

qi
(D

(1)
−q)HqqiV̂qi

)†
−
(
V̂H

qi
HH

qqi
R̂−1

qi
(D

(2)
−q)HqqiV̂qi

)†∥∥∥∥
F

(4.16b)

≤
K∑
i=1

∥∥∥V̂†
qi
H†

qqi

(
R̂−1

qi
(D

(1)
−q)− R̂−1

qi
(D

(2)
−q)
)
H†H

qqi
V̂†H

qi

∥∥∥
F

(4.16c)

=
K∑
i=1

∥∥∥∥∥V̂†
qi
H†

qqi

[
Q∑

r ̸=q

Hrqi

[
K∑
j=1

V̂rj

(
D(1)

rj
−D(2)

rj

)
V̂H

rj

]
HH

rqi

]
H†H

qqi
V̂†H

qi

∥∥∥∥∥
F

=
K∑
i=1

∥∥∥∥∥V̂†
qi
H†

qqi

[
Q∑

r ̸=q

HrqiV̂r

(
D(1)

r −D(2)
r

)
V̂H

r H
H
rqi

]
H†H

qqi
V̂†H

qi

∥∥∥∥∥
F

≤
K∑
i=1

Q∑
r ̸=q

∥∥∥V̂†
qi
H†

qqi
HrqiV̂r

(
D(1)

r −D(2)
r

)
V̂H

r H
H
rqi
H†H

qqi
V̂†H

qi

∥∥∥
F

(4.16d)

≤
K∑
i=1

Q∑
r ̸=q

ρ
(
V̂H

r H
H
rqi
H†H

qqi
V̂†H

qi
V̂†

qi
H†

qqi
HrqiV̂r

)∥∥D(1)
r −D(2)

r

∥∥
F

(4.16e)

=

Q∑
r ̸=q

[S]q,r er, (4.16f)

where V̂r , [V̂r1 , . . . , V̂rK ] and S ∈ CQ×Q is defined as

[S]q,r =


K∑
i=1

ρ
(
V̂H

r H
H
rqi
H†H

qqi
V̂†H

qi
V̂†

qi
H†

qqi
HrqiV̂r

)
, if r ̸= q

0, if r = q.

(4.17)

Note that the inequality (4.16a) holds due to the non-expansive property of the projection
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onto a closed and convex set [67], inequalities (4.16b) and (4.16d) hold because X =

diag{X1, . . . ,XK} implies that ∥X∥F ≤
∑K

i=1 ∥Xi∥F , inequality (4.16c) holds due to the

reverse order law for the Moore-Penrose pseudo-inverse [48], and inequality (4.16e) holds

because the Frobenius norm is consistent [66].

Define the vectors eWF = [eWF1 , . . . , eWFQ
]T and e = [e1, . . . , eQ]

T . The set of inequali-

ties (4.16f) implies that

0 ≤ eWF ≤ Se. (4.18)

Given a vector w = [wq, . . . , wQ]
T > 0, the mapping WF(D) is a block-contraction with

respect to the norm ∥ · ∥wF,block, if there exists a non-negative constant α < 1, such that

∥∥WF(D(1))−WF(D(2))
∥∥w
F,block

≤ α
∥∥D(1) −D(2)

∥∥w
F,block

, ∀D(1),D(2). (4.19)

From the inequality (4.18), one has

∥eWF∥w∞,vec ≤ ∥Se∥w∞,vec ≤ ∥S∥w∞,mat∥e∥w∞,vec, (4.20)

as the induced ∞-norm ∥ · ∥w∞,mat is consistent [66]. Then,

∥∥WF(D(1))−WF(D(2))
∥∥w
F,block

= max
q∈Ω

∥∥WFq(D
(1))−WFq(D

(2))
∥∥
2

wq

= ∥eWF∥w∞,vec

≤ ∥S∥w∞,mat∥e∥w∞,vec

= ∥S∥w∞,mat

∥∥D(1) −D(2)
∥∥w
F,block

. (4.21)

Thus, if ∥S∥w∞,mat < 1, the WF(D) mapping is a contraction, which implies the unique-

ness of the NE in game G [67]. In addition, the condition ∥S∥w∞,mat < 1 is also sufficient to

guarantee the convergence of the NE from any starting precoding strategy Dq ∈ Dq. Note

that if S is a non-negative matrix, there always exists a positive vector w satisfying [67]

(C) : ∥S∥w∞,mat < 1 ⇐⇒ ρ(S) < 1. (4.22)

Remark 4.1: Assuming the path loss fading model in this multicell system, a physical

interpretation of the sufficient condition (C) is as follows. When the intra-cell BS-MS

distance gets smaller relatively to the distance between the BSs, the ICI becomes less
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dominant. Thus, the positive off-diagonal elements of S also become smaller. This results

in a smaller spectral radius of S. Therefore, as the MSs are getting closer to its connected

BS, the probability of meeting condition (C) is higher, which then guarantees the uniqueness

of the NE.

4.4 The Multicell Block-Diagonalization Precoding -

Coordinated Design

4.4.1 Problem Formulation

In Section 4.3, we examined the fully decentralized approach in the multicell BD precoding

design and characterized the NE of the system. However, it is well-known that the NE

need not be Pareto-efficient [52]. Via coordination among the BSs, significant network

sum-rate improvement can be obtained by jointly designing all the precoders at the same

time. Nonetheless, this advantage may come with the expense of message passing among

the coordinated BSs as explained later in this section. We investigate the coordinated

multicell BD precoding design in order to jointly maximize the network WSR through the

following optimization

maximize
Q1,...,QQ

Q∑
q=1

ωq

K∑
i=1

log
∣∣I+HH

qqi
R−1

qi
(Q−q)HqqiQqi

∣∣ (4.23)

subject to
K∑
i=1

Tr{Qqi} ≤ Pq,∀q

Qqi ≽ 0, ∀i, ∀q

HqqjQqiH
H
qqj

= 0, ∀j ̸= i, ∀q,

where ωq ≥ 0 denotes the non-negative weight associated with BS-q. Since the BD con-

straints can be removed by formulating the precoding covariance matrix Qqi as V̂qiDqiV̂
H
qi

(where Dqi
is an arbitrary N̂ × N̂ and V̂qi given in (4.5)), the optimization problem (4.23)
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can be restated as

maximize
D1,...,DQ

Q∑
q=1

ωq

K∑
i=1

log
∣∣∣I+ V̂H

qi
HH

qqi
R̂−1

qi
(D−q)HqqiV̂qiDqi

∣∣∣ (4.24)

subject to
K∑
i=1

Tr{Dqi} ≤ Pq, ∀q

Dqi ≽ 0, ∀i, ∀q.

It is observed that problem (4.24) is nonconvex due to presence of Drj ’s in the ICI term

R̂qi(D−q)’s. Thus, it is generally difficult and computationally complex to find the globally

optimal solution to problem (4.24). Consequently, we focus on proposing a low-complexity

algorithm that can obtain at least a locally optimal solution.

4.4.2 The Iterative Linear Approximation (ILA) Solution Approach

This section presents a solution approach to the nonconvex problem (4.24) by considering

it as a difference of convex (DC) program [80]. Specifically, by iteratively isolating and

approximating the nonconvex part of the objective function into linear terms, one can

decompose the DC program into multiple convex optimization problems. This DC solution

approach, termed as the iterative linear approximation (ILA) algorithm, has been utilized

in a recent work [57] in order to maximize the multicell network sum-rate with one MS per

cell.

Denote fq(Dq,D−q) =
∑Q

r ̸=q ωr

∑K
j=1 Rrj(Dq,D−q) as the WSR of all cells except cell-q.

Note that fq(Dq,D−q) is nonconcave in Dqi , i = 1, . . . , K. At a given value of (D̄q, D̄−q),

approximate fq by using the Taylor expansion of fq around D̄qi , i = 1, . . . , K, and retaining

the first linear term

fq(Dq, D̄−q) ≈ fq(D̄q, D̄−q)−
K∑
i=1

Tr
{
Aqi

(
Dqi − D̄qi

)}
, (4.25)
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where Aqi is the negative partial derivative of fq with respect to the Dqi , evaluated at D̄qi

Aqi = −
∂fq
∂Dqi

∣∣∣∣
Dqi=D̄qi

= −
Q∑

r ̸=q

ωr

K∑
j=1

∂Rrj

∂Dqi

∣∣∣∣∣
Dqi=D̄qi

=

Q∑
r ̸=q

ωr

K∑
j=1

V̂H
qi
HH

qrj

[
R̂−1

rj
−
(
R̂rj +HrrjV̂rjDrjV̂

H
rj
HH

rrj

)−1
]
HqrjV̂qi

∣∣∣∣∣
Dqi=D̄qi

.(4.26)

Using (4.25), the network WSR around (D̄q, D̄−q) can be approximated as ωq

∑K
i=1Rqi−

fq(D̄q, D̄−q)−
∑K

i=1Tr
{
Aqi

(
Dqi − D̄qi

)}
. Omitting the deterministic terms in the objec-

tive function, the nonconvex problem (4.24) can be approximated as

maximize
Dq1 ,...,DqK

ωq

K∑
i=1

log
∣∣∣I+ V̂H

qi
HH

qqi
R̂−1

qi
(D̄−q)HqqiV̂qiDqi

∣∣∣− K∑
i=1

Tr {AqiDqi} (4.27)

subject to Dqi ≽ 0, ∀i
K∑
i=1

Tr{Dqi} ≤ Pq,

which can be solved solely at BS-q. Thus, if the Q BSs take turns to approximate the

original problem (4.24), it can be solved via Q per-cell separate problems (4.27).

It can be observed that the approximated problem (4.27) is similar to the sum-rate max-

imization problem with BD precoding, albeit the presence of the term
∑K

i=1Tr {AqiDqi}.
Herein, this term is the penalty charged on the ICI induced by BS-q to the MSs in other

cells, whereas Aqi acts as the interference price. If the ICI penalty term is not presented,

the BS would only attempt to maximize the sum-rate for its connected MSs. As a result,

the multicell system is in competition mode, as studied in Section 4.3. In contrast, in coor-

dination mode, each BS is doing its best in limiting the ICI induced to other cells through

this ICI penalty mechanism.

Since the approximated problem (4.27) is now convex, it can be readily solved by

standard convex optimization techniques. In the following, we present the closed-form

solution to the problem via the Lagrangian duality. The Lagrangian of problem (4.27) can
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be stated as

Lq(Dqi , λq) = ωq

K∑
i=1

log
∣∣∣I+ V̂H

qi
HH

qqi
R̂−1

qi
(D̄−q)HqqiV̂qiDqi

∣∣∣
−

K∑
i=1

Tr {(Aqi + λqI)Dqi}+ λqPq, (4.28)

where λq ≥ 0 is the Lagrangian multiplier associated with the power constraint. The dual

function is then given by

gq(λq) = max
Dqi≽0

Lq(Dqi , λq). (4.29)

For a given λq, the optimal solution to the Lagrangian (4.28) is presented in the following

proposition.

Proposition 4.1. Let Gqi be the generalized eigen-matrix of V̂H
qi
HH

qqi
R̂−1

qi
(D̄−q)HqqiV̂qi

and (Aqi + λqI). The optimal solution, which maximizes the Lagrangian (4.28), must have

the structure GqiPqiG
H
qi
, i = 1, . . . , K, where Pqi is a diagonal matrix with non-negative

elements.

Proof. The proof for this proposition is similar to that of Proposition 1 in [57] for the case

of single-user rate maximization with a penalty term. We omit the detailed proof of this

proposition for brevity.

Given Gqi as the generalized eigen-matrix of V̂H
qi
HH

qqi
R̂−1

qi
(D̄−q)HqqiV̂qi and (Aqi +λqI),

one has

Σ(1)
qi

= GH
qi
V̂H

qi
HH

qqi
R̂−1

qi
(D̄−q)HqqiV̂qiGqi (4.30)

Σ(2)
qi

= GH
qi
(Aqi + λqI)Gqi ,

where Σ(1)
qi

and Σ(2)
qi

are diagonal and positive semi-definite. Thus, the maximization of the

Lagrangian (4.28) becomes

maximize
Pqi≽0

ωq

K∑
i=1

log
∣∣∣I+PqiΣ

(1)
qi

∣∣∣− K∑
i=1

Tr
{
PqiΣ

(2)
qi

}
, (4.31)
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whose optimal solution can be obtained by the well-known WF structure

[P⋆
qi
]n,n =

 ωq[
Σ(2)

qi

]
n,n

− 1[
Σ(1)

qi

]
n,n


+

, i = 1, . . . , K. (4.32)

It remains to adjust the dual variable λq to impose the power constraint
∑K

i=1Tr{P⋆
qi
} ≤ Pq

for the aboveWF solution. One can easily verify for the case λq = 0 whether
∑K

i=1Tr{P⋆
qi
} <

Pq. If it holds, it means BS-q does not transmit at its full power limit. Otherwise, λq > 0

can be searched by the bisection method until
∑K

i=1Tr{P⋆
qi
} = Pq.

4.4.3 Convergence of the ILA Algorithm and its Distributed Implementation

This section addresses the convergence of the ILA algorithm and its distributed implemen-

tation. In order to solve the problem of Q cells in (4.24), the ILA algorithm requires each

BS-q, q = 1, . . . , Q, to update the parameters Aqi ’s and sequentially take turns to solve its

corresponding optimization (4.27). The convergence of the ILA algorithm is given in the

following theorem.

Theorem 4.2. The optimization (4.27) carried at any given BS-q always improves the

network WSR. Thus, the Gauss-Seidel (sequential) iterative update across the Q BSs is

guaranteed to converge to at least a local maximum.

Proof. Suppose that Dq = D̄q =
{
D̄qi

}K
i=1

, ∀q is obtained from the previous iteration, and

D⋆
q =

{
D⋆

qi

}K
i=1

,∀q is the optimal solution obtained from the optimization problem (4.27)

at BS-q. Using a technique similar to the on applied in [57, 81], it can be shown that

fq(Dq, D̄−q) is a convex function with respect to Dq. Thus, by the first-order condition for

the convex function fq(Dq, D̄−q) [82], one has

fq(D
⋆
q, D̄−q) ≥ fq(D̄q, D̄−q)−

K∑
i=1

Tr
{
Aqi(D

⋆
qi
− D̄qi)

}
. (4.33)
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After the optimization (4.27) carried at BS-q, the network WSR is updated such that

Q∑
q=1

ωq

K∑
i=1

Rqi(D
⋆
q, D̄−q) = ωq

K∑
i=1

Rqi(D
⋆
q, D̄−q) + fq(D

⋆
q, D̄−q)

≥ ωq

K∑
i=1

Rqi(D
⋆
q, D̄−q) + fq(D̄q, D̄−q)−

K∑
i=1

Tr
{
Aqi(D

⋆
qi
− D̄qi)

}
≥ ωq

K∑
i=1

Rqi(D̄q, D̄−q) + fq(D̄q, D̄−q)−
K∑
i=1

Tr
{
Aqi(D̄qi − D̄qi)

}
=

Q∑
q=1

ωq

K∑
i=1

Rqi(D̄q, D̄−q), (4.34)

where the first inequality is due to the first-order condition in (4.33) and the second in-

equality is due to the fact that D⋆
q is the optimal solution of problem (4.27). Clearly,

the optimization carried at a given BS-q always improves the network WSR. In the ILA

algorithm, each BS, say BS-q, updates the parameters Aqi ’s and sequentially takes turn

to solve its corresponding optimization (4.27). Since the network WSR is upper-bounded,

the Gauss-Seidel (sequential) updates across the Q BSs must converge monotonically to at

least a local maximum. This concludes the proof for Theorem 4.2.

As presented in Section 4.3, the BD precoding design for a multicell system under the

IA mode can be implemented in a fully decentralized manner. Interestingly, distributed

implementation can also be realized for the BD precoding design under the IC mode.

Via the coordination and message exchange among the BSs, the ILA can be implemented

distributively as follows. Since the optimization problem (4.27) can be executed at the

corresponding BS with only local information (CSI and IPN at the connected MSs), it

remains to show that the pricing factorsAqi ’s can also be computed in a distributed manner

through a message exchange mechanism among the BSs. It is observed from equation (4.26)

that in order to compute Aqi , BS-q has to know the channels Hqrj ’s to all the MSs in the

other cells. This is an important requirement for BS-q to coordinate its induced ICI. In

addition, BS-q needs to acquire the factor Brj = R̂−1
rj
−
(
R̂rj +HrrjV̂rjDrjV̂

H
rj
HH

rrj

)−1

from other cells. Thus, it is required that each MS computes its corresponding factor

Brj using local measurements on the total IPN in R̂rj and the total IPN plus signal in

R̂rj + HrrjV̂rjDrjV̂
H
rj
HH

rrj
. Each MS can calculate the factor Brj with local information
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and feed back to its connected BS. These factors Brj ’s are then exchanged among the BSs

to evaluate the prices Aqi ’s. This message exchange mechanism among the coordinated

BSs is the distinct feature of the IC mode, compared to the IA mode.

4.5 Multicell BD-DPC Precoding: Competition and

Coordination

4.5.1 BD-DPC Precoding on a Per-cell Basis

This section considers the multicell system where each BS utilizes BD-DPC to the downlink

transmissions of its connected MSs. It is well-known that DPC is the capacity-achieving

encoding scheme for the multiuser broadcast channel [26–28]. In [26], a suboptimal and

simpler zero-forcing DPC (ZF-DPC) scheme was proposed for single-antenna receivers that

takes advantage of both DPC and ZF precoding. In ZF-DPC, the information signals sent

to the multiple users are encoded in sequence such that the receiver at any user does not

see any inter-user interference due to the use of ZF and DPC at the BS. In this work, we

apply a similar technique to the encoding process at each BS. Due to the consideration of

multi-antenna receivers, the technique shall be referred to as the BD-DPC precoding.

At any BS, say BS-q, denote the encoding sequence to its K connected MSs as πq =

[πq(1), . . . , πq(K)]T . The concept of BD-DPC can be briefly explained as follows:

• BS-q freely designs the precoder Wπq(1) for MS-πq(1).

• BS-q, having the noncausal knowledge of the codeword intended for MS-πq(1), uses

DPC such that MS-πq(2) does not see the codeword for MS-πq(1) as interference. At

the same time, the precoder Wπq(2) for MS-πq(2) is designed on the null space caused

by Hqπq(1) to eliminate its induced interference to MS-πq(1).

• Similarly, to encode the signal for user-i, BS-q can utilize the noncausal knowledge

of the codewords for MSs πq(1), . . . , πq(i − 1), and design Wπq(i) on the null space

caused by Ĥ′
πq(i)

= [Hqπq(1), . . . ,Hqπq(i−1)].

4.5.2 The Multicell BD-DPC Precoding - Competitive Design

Similar to game G defined in Section 4.3, we consider a new game G ′, where each BS

strategically adapts its BD-DPC precoders to maximize the sum-rate to its connected
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MSs. Mathematically, game G ′ can be defined as

G ′ =
(
Ω,
{
S ′
q(πq)

}
q∈Ω , {Rq}q∈Ω

)
, (4.35)

The set of admissible strategies S ′
q(πq) is now defined as

S ′
q(πq) =

{
Qπq(i) ∈ SM×Mq : Qπq(i) = V̂πq(i)Dπq(i)V̂

H
πq(i),

Dπq(i) ≽ 0,
K∑
i=1

Tr
{
Dπq(i)

}
≤ Pq

}
, (4.36)

where V̂πq(i) is the null space created by Ĥ′
πq(i)

. Due to the similarity between games G
and G ′, the characterization for game G presented in Section 4.3.2 can be directly applied

to game G ′. In particular, it can be concluded that there always exists at least one NE in

game G ′ and the NE is unique if

(C′) : ρ(S′) < 1, (4.37)

where S′ ∈ CQ×Q is defined as

[S′]q,r =


K∑
i=1

ρ
(
V̂H

πr
HH

rπq(i)
H†H

qπq(i)
V̂†H

πq(i)
V̂†

πq(i)
H†

qπq(i)
Hrπq(i)V̂πr

)
, if r ̸= q

0, if r = q,

(4.38)

with V̂πr , [V̂πr(1), . . . , V̂πr(K)].

Remark 4.2: Due to the dependence of the admissible strategy set S ′
q(πq) on the en-

coding order πq at BS-q, the characterization of game G ′ strictly depends on the encoding

order at each BS. In addition, with different encoding orders at a BS, say BS-q, the optimal

strategies, which maximize the sum-rate at BS-q, are also different. The condition (C′) for

the uniqueness of game G ′ also depends on the encoding order at each BS-q. In fact, for

any permutation in π1, . . . ,πQ, we have at least a different NE of game G ′. Given K!

encoding order permutations at BS-q, it can be concluded that game G ′ has at least (K!)Q

NE points.

Remark 4.3: For a particular encoding order π1, . . . ,πQ in game G ′, game G ′ provides
a higher degree of freedom in designing the precoder at each BS. In fact, the size of matrix

V̂πq(i) in game G ′ is at least equal or larger than its counterpart V̂qi in game G. Intuitively,
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the off-diagonal elements of matrix S′ are also larger than that of matrix S. As a result,

it is expected that the condition for the uniqueness of the NE in game G ′ is stricter than
that in game G.

4.5.3 The Multicell BD-DPC Precoding - Coordinated Design

In this section, we investigate the implementation of BD-DPC precoding in a multicell

system under the IC mode. In this case, we consider the joint BD-DPC precoding design

to maximize the network WSR as follows:

maximize
Q1,...,QQ

Q∑
q=1

ωqRq(Qq,Q−q) (4.39)

subject to Qq ∈ S ′
q,∀q.

Similar to the optimization problem (4.23) considered in Section 4.4, the above problem

is also nonconvex. Thus, we apply the same ILA algorithm proposed in Section 4.4 to solve

problem (4.39). In particular, due to monotonic convergence of the ILA algorithm, we can

obtain at least a locally optimal solution to the problem. The only difference here is that

the solution Qqi of problem (4.39) must be in the form V̂πq(i)DqiV̂
H
πq(i)

, where V̂πq(i) is the

null space created by Ĥ′
πq(i)

, and Dqi is obtained from the ILA algorithm.

4.6 Simulation Results

This section presents simulation results validating our studies on the uniqueness of an NE

and the convergence to the NE in games G and G ′. We also present the sum-rates of the

multicell system under the IA and IC modes when BD, BD-DPC, or DPC precoding is

applied on a per-cell basis. Under the IA mode, the sum-rates obtained from the games G
and G ′ are compared to the one obtained from the game where DPC precoding is applied

at each BS. In the same system setting, the DPC precoding [26, 28] is performed on a

per-cell basis in a noncooperative manner (each BS selfishly maximizes its own sum-rate)

until the multicell system converges to a stable state. Similarly, under the IC mode, we

compare the network sum-rates (with equal weights) obtained from the ILA algorithm for
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Fig. 4.1 A multicell system configuration with 3 cells, 3 users per cell.

the case of BD or BD-DPC precoding design to that of the DPC design.1 For the BD-DPC

or DPC precoding, we assume a fixed encoding order from MS-1 to MS-K at BS-q and

similar orders at other BSs.

We consider a 3-cell system with 3 MSs per cell sharing the same channel frequency, as

illustrated in Fig. 4.1. The numbers of antennas at each BS and each MS are set at Mq = 8

and N = 2. The same power constraint Pq = 1 is set at each BS, unless stated otherwise.

The AWGN at each MS is set as Zqi = σ2I with σ2 = 0.01. The distance between any

two BSs is normalized to 2. In each cell, the MSs are assumed to be randomly located

on a circle from its connected BS with the radius of d. The channels from a BS to a MS

are generated by using the path-loss model, where the path-loss exponent is set at 3. In

each figure, each plotted point is obtained by averaging over 10,000 independent channel

realizations.

Fig. 4.2 displays the probability of the NE’s uniqueness versus intra-cell BS-MS distance

d by evaluating condition (C) for game G and (C′) for game G ′. Corresponding to a small

distance d is the low-ICI region (and high signal-to-interference-plus-noise (SINR) as a

1To optimize the DPC in a multicell system under the IC mode, we utilize the numerical algorithm
presented in Chapter 6.
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Fig. 4.2 Probability of NE’s uniqueness versus the intra-cell BS-MS distance
d.

result). In contrast, at high d, each MS is more susceptible to higher level of ICI (low-

SINR region). As observed from the figure, the uniqueness of the NE (in both games G
and G ′) is guaranteed if the ICI is sufficiently small, as suggested in our analytical result in

Section 4.3. In addition, the condition of the NE’s uniqueness in game G ′ is much tighter

than that in game G, as analyzed in Section 4.5.2.

Fig. 4.3 illustrates the network sum-rates obtained from the BD, BD-DPC, and DPC

precoding versus the intra-cell BS-MS distance d under both IA and IC modes. It is

observed from the figure that increasing the ICI powers results in significant sum-rate

reductions in the multicell system. Under the IA mode, while the sum-rate in the DPC

precoding game is always higher than the BD and BD-DPC games due to the optimality

of DPC on a per-cell basis, the performance difference is rather small. In this multicell

setting, the BD and BD-DPC multicell games are much simpler to analyze than the DPC

precoding game. Under the IC mode, it can be observed that the BD-DPC precoder obtains

a performance very close to that of the DPC precoder, especially at the high SINR (low

ICI) region. Thus, it may be more advantageous to utilize BD or BD-DPC precoding over
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Fig. 4.3 Network sum-rates versus the intra-cell BS-MS distance d.

DPC because of their simpler implementation. In comparing the IC and IA modes, it can

be observed that the network sum-rates can be significantly improved by coordinating the

ICI. However, this performance advantage comes with the requirement of control signaling

and CSI exchange among the coordinated BSs.

Fig. 4.4 illustrates the network sum-rates obtained from the BD, BD-DPC, and DPC

precoding versus the transmit power to AWGN ratio P/σ2 for d = 0.7 (assuming the same

power budget P at all Q BSs). It is observed that increasing the transmit power at each

BS does improve the network sum-rates in both IA and IC mode. However, at very high

level of transmit power, the network sum-rates obtained from the multicell precoding games

become saturated. This is due to the fact that the ICI is also increased relatively with the

intra-cell information signal powers. In this case, it is desirable to coordinate and limit the

amount of ICI by the IC mode. Apparently, the IC mode does perform much better than

the IA mode with all 3 precoding designs at the high ICI region.

To illustrate the convergence of the multicell precoding games G and G ′, we select a spe-

cific channel realization and plot the achievable sum-rates versus the number of iterations

of the two designs in Fig. 4.5. In both games, the BSs perform sequential precoder updates.
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Fig. 4.4 Network sum-rates versus the transmit power to AWGN ratio at
each BS for d = 0.7.

The network sum-rates and the sum-rates in each cell are then plotted after each instance

of updating. It is observed that both games converge very quickly in a few iterations. As

expected, the BD-DPC game results in a higher network sum-rate over the BD game due

to the superior performance of BD-DPC precoding over BD precoding on a per-cell basis.

Finally, Fig. 4.6 illustrates the convergence of the proposed ILA algorithm to maximize

the network sum-rate under the IC mode. For the same channel realization utilized to

generate Fig. 4.5, we plot the network sum-rates and sum-rates in each cell after each

time instance. As observed in the figure, the ILA algorithm monotonically converges with

the sequential updates at the coordinated BSs for both the cases of BD and BD-DPC

precoding. At each update, even though the sum-rate at one of the cells may decrease,

the network sum-rate is always improved. This convergence behavior of the ILA algorithm

agrees with our analysis in Theorem 4.2. As expected, the BD-DPC precoding converges

to a better sum-rate than the BD precoding due to its superior performance on a per-

cell basis. Compared to the convergence of the BD and BD-DPC games in Fig. 4.5, the

ILA algorithm takes more iterations to converge. Nonetheless, the ILA algorithm provides
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Fig. 4.5 Sum-rates versus number of iterations for d = 0.7 in the IA mode
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better sum-rate performances for both BD and BD-DPC precoding.

4.7 Concluding Remarks

This chapter studied the multicell system with universal frequency reuse where BD or

BD-DPC precoding is performed on a per-cell basis. When the multicell system is under

competition mode, we investigated the conditions on the existence and uniqueness of the

multicell games’ NE. Simulation results confirmed that the NE of the multicell games is

unique if the ICI is sufficiently small. They also indicated that the BD-DPC multicell

precoding game outperforms the BD game while achieving a sum-rate very close to that

of the DPC precoding game. When the multicell system is under coordination mode,

we proposed the low-complexity and distributed ILA algorithm to obtain at least a local

optimal solution to the nonconvex WSR maximization problems. Simulation results then

show that the network sum-rate can be improved over the competition mode by coordinating

the BD or BD-DPC precoders across the multicell system.
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Chapter 5

Sum-rate Maximization in the

Multicell MIMO Multiple-Access

Channel with Interference

Coordination

5.1 Introduction

In the downlink direction, CoMP coordinates the simultaneous information transmissions

from multiple BSs to multiple MSs, especially to the ones in the cell-edge region. In the

uplink direction, CoMP allows the system to take advantage of the multiple receptions at

the multiple cells to jointly decode the uplink signal from the MSs. In Chapters 3 and 4, it

has been shown that significant power reduction or rate enhancement can be obtained by

such a joint CoMP precoding design across the coordinated BSs in the downlink transmis-

sion. Similarly, in the uplink direction, it is expected that the system performance can be

also improved by exploiting interference coordination among transmitting MSs. However,

to the best of our knowledge, no work in the literature has addressed this coordinated

precoding design to realize its performance enhancement in the uplink transmissions. In

contrast to the downlink direction, where the coordinated precoders are designed at the

The materials presented in Chapter 5 have been presented at the 2012 IEEE Wireless Communications
and Networking Conference in Paris, France [83], and accepted for publication in the IEEE Transactions
on Wireless Communications [84].
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BSs, it is desirable for the uplink counterpart that each MS is able to determine its precoder

distributively with local information only. In this case, the role of the BSs is to exchange

useful control signaling to the MSs so that each MS can optimize its precoder on its own.

On the other hand, the precoder at each MS has to be devised in a coordinated manner in

order to maximize the link performance to its connected BS while minimizing its induced

ICI to other BSs.

In this chapter, we examine a coordinated multicell system in a general setting with

multiple MSs per cell, where each MS is equipped with multiple transmit antennas. In each

cell, the multiple MSs concurrently transmit information signals to its connected BS, which

emulates a MIMO multiple-access channel (MAC) system. Per the coordination mode, the

BS only decodes the signals for its connected MSs by implementing the capacity-achieving

decoding technique, namely successive interference cancellation (SIC). The main interest

of this chapter is to jointly design the uplink precoders at the MSs with the objective

of maximizing the network WSR. Since this WSR maximization problem is shown to be

nonconvex, it is generally difficult and computationally complex to find its globally optimal

solution. Thus, the main focus of this chapter is on proposing low-complexity algorithms

to divide the nonconvex WSR maximization into a sequence of simpler convex problems.

It is known that the resource allocation problem (power allocation, precoder design, etc)

for maximizing the WSR in an interference network is a challenging task. Even if there

is only one MS per cell, the WSR maximization problem turns out to be nonconvex [81].

Several works in literature have examined different numerical techniques to design the

transmit precoders to maximize the WSR. Specifically, the gradient projection method

was applied in [81] to search for a locally optimal transmit strategy. The works in [55, 57]

applied the successive convex approximation technique to decompose the original nonconvex

problem into multiple convex problems, which can be solved separately at the transmitters.

In particular, each transmitter optimizes its precoder to maximize its link data rate with an

interference-penalty term on the interference induced to other links [55,57]. This approach,

being referred to as iterative linear approximation (ILA) [58], can be traced back to earlier

works in difference of convex (DC) programming [80, 85, 86], where the nonconvex parts

are linearly approximated into the penalty terms. In [55, 57, 81], by considering only one

single MS per cell, the decomposed problem can be readily solved in closed-form at its

corresponding BS [57].

One other distributed approach to locally solve the nonconvex WSR maximization prob-
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lem in an interference network is the weighted mean squared error (WMMSE) algorithm.

The main concept of the WMMSE is the transformation of the WSR maximization prob-

lem into an equivalent WMMSE problem with some specially chosen weight matrices [33].

The WMMSE problem is then solved by alternatively optimizing the weight matrices, the

precoders, and the minimum mean squared error (MSE) decoders. Initially proposed in [33]

for the single-cell MIMO broadcast downlink channel, the WMMSE algorithm was consid-

ered in [87] to maximize the WSR with one data stream per link. Recently, the WMMSE

approach has been extended to the multicell downlink system with multiple MSs per cell

in [58], where the linear precoders are optimized for the multicell throughput maximization.

Compared to the sequential update by the ILA algorithm, the WMMSE algorithm may

converge faster due to its distributive and simultaneous updating procedure [58].

The main contribution of this chapter is the development of low-complexity algorithms

to solve the nonconvex WSR maximization problem in the multicell MIMO-MAC. The two

approaches, namely ILA and WMMSE, are considered in order to maximize the network

WSR. In addition, this chapter presents the distributed implementation of each algorithm,

which allows certain operations in the algorithm to be performed in a distributed manner

among the coordinated BSs and MSs.

When applying the ILA algorithm to the multicell MIMO-MAC, the approximation

and decomposition step converts the nonconvex problem into a sequence of multiple MAC

sum-rate maximization problems with interference-penalty terms, where each problem cor-

responds to the MAC in each cell. We then show that each decomposed problem is a convex

program, which facilitates the finding of its optimal solution at its corresponding BS. How-

ever, due to the consideration of multiple MSs per cell, a closed-form optimal solution to

the decomposed problem is not readily available. Instead, by exploring the inherently de-

coupled constraints for the transmit covariance matrix of each MS, we derive an equivalent

optimization problem that can be solved sequentially over each variable matrix by a fast-

converging algorithm. Interestingly, the decomposition in the ILA algorithm then reveals

the structure of the optimal uplink precoders. In addition, the ILA solution approach also

reveals the message signaling mechanism to facilitate its distributed implementation among

the coordinated cells.

When applying the WMMSE algorithm to the multicell MIMO-MAC, we show that the

network WSR maximization problem can also be transformed into an equivalent WMMSE

problem. Taking SIC into consideration, we then show how to optimally determine the
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MMSE precoders at the MSs, the MMSE decoders, and the weight matrices at the BSs.

In addition, we present the message passing mechanism among the BSs themselves and

between the BS and its connected MSs in the multicell MIMO-MAC that facilitates the

distributed implementation of the WMMSE algorithm. For both ILA and WMMSE algo-

rithms, monotonic convergence to at least local optimal solutions is subsequently proven.

Simulation results show that the proposed algorithms can significantly improve the network

WSR, in comparison to the multicell system with no interference coordination among the

BSs. The simulations also confirm the convergence analysis of the proposed algorithms.

5.2 System Model and Problem Formulation

We consider the multiuser uplink transmission of a multicell system with Q separate cells

operating on the same frequency channel. In each cell, multiple MSs, each equipped with

multiple transmit antennas, are sending independent data streams to its connected multiple-

antenna BS. For simplicity of the presentation, it is assumed that the numbers of antennas

at the BS and MS are M and N , respectively, and the number of MSs in each cell is K.

Since the multicell system operates on the same frequency channel, the intended signal

from a MS to a BS is now subject to the intra-cell interference from other MSs in the

same cell, as well as the ICI from the MSs in other cells. In the coordinated design of this

multicell system, the precoders at each MS are jointly optimized to fully manage both the

inter-cell and intra-cell interferences.

Considering the MAC at a particular cell, say cell-q, the received signal yq at its BS

can be modeled as

yq =
K∑
i=1

Hqqixqi +

Q∑
r ̸=q

K∑
i=1

Hqrixri + zq, (5.1)

where xri ∈ CN×1 is the transmitted vector from N -antenna MS-i in the rth cell, Hqri

models the channel from MS-i of cell-r to the qth BS, and zq is the zero-mean additive

Gaussian noise vector with the covariance matrix Zq.

Assuming linear precoding at each MS, the transmitted signal from MS-i in cell-q can

be expressed as

xqi = Vqisqi , (5.2)

where sqi ∈ CD×1 represents the information signal vector for MS-i, Vqi ∈ CN×D is the
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precoder matrix for MS-i, and D = min(M,N) is the maximum number of spatial data

streams that can be supported by MS-i. Without loss of generality, columns of the pre-

coding matrix Vqi may be set to zero if the corresponding streams are not active. While

our formulation allows each MS to multiplex up to D independent spatial streams, it may

not be clear a priori how many spatial streams are actually active (capable of carrying

information data). Instead, after the optimization process to determine the optimal pre-

coder Vqi for MS-i, the actual number of data streams for MS-i can be determined easily

by assessing the rank of Vqi . It is assumed that E
[
sqis

H
qi

]
= I. In addition, the precoder

Vqi is constrained by transmit power limit Pqi , i.e.,

Tr
{
VqiV

H
qi

}
≤ Pqi . (5.3)

Let Xqi = E
[
xqix

H
qi

]
= VqiV

H
qi

be the transmit covariance matrix of MS-i of cell-

q. Since rank{Xqi} = rank{Vqi}, should the optimization be carried over Xqi , assessing

the rank of Xqi then reveals the number of active streams supported by MS-i of cell-q.

Denote Xq = {Xqi}
K
i=1 as the uplink precoder profile of the K users in cell-q. Likewise,

denote X−q = (X1, . . . ,Xq−1,Xq+1, . . . ,XQ) as the precoding profile of all cells except

cell-q. Denote

z−q =

Q∑
r ̸=q

K∑
i=1

Hqrixri + zq (5.4)

as the total ICI plus noise (IPN) at BS-q, and

Rq = E
[
z−qz

H
−q

]
=

Q∑
r ̸=q

K∑
i=1

HqriXriH
H
qri

+ Zq (5.5)

as the covariance matrix of the IPN at BS-q.

In the coordinated design being considered, each BS only attempts to decode the signals

from its connected MSs using the capacity-achieving multiuser decoding technique, namely

successively interference cancellation (SIC) [88]. For instance, BS-q employs SIC for the

transmissions from the K MSs within cell-q. Assuming the decoding order from MS-1

(first) to MS-K (last), for a certain IPN covariance Rq, the achievable rate of user-i in
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cell-q can be expressed as

Rqi(Xq,X−q) = log

∣∣∣Rq +
∑K

j=iHqqjXqjH
H
qqj

∣∣∣∣∣∣Rq +
∑K

j>i HqqjXqjH
H
qqj

∣∣∣ , (5.6)

where the intra-cell interference from user-1 to user-(i−1) has been suppressed. Collectively,

the MAC sum-rate of all K users in cell-q is given by [23]

Rq (Xq,X−q) =
K∑
i=1

Rqi = log

∣∣∣∣∣I+R−1
q

(
K∑
i=1

HqqiXqiH
H
qqi

)∣∣∣∣∣ , (5.7)

where the denominators inside the log function are sequentially eliminated. Note that this

sum-rate is obtained when BS-q does not decode the transmissions from the users in other

cells. The network WSR is then given by
∑Q

q=1 ωqRq(Xq,X−q), where ωq denotes the non-

negative weight of cell-q. To maximize the network WSR, let us consider the following

optimization

maximize
X1,...,XQ

Q∑
q=1

ωq log

∣∣∣∣∣I+R−1
q

(
K∑
i=1

HqqiXqiH
H
qqi

)∣∣∣∣∣ (5.8)

subject to Tr{Xqi} ≤ Pqi , ∀i, ∀q

Xqi ≽ 0, ∀i, ∀q.

It is observed that problem (5.8) is clearly a nonconvex problem due to the presence of

Xqi ’s in the interference terms Rr’s, r ̸= q. Thus, obtaining the globally optimal solution

to the problem is computationally complex and intractable for practical applications. It

may also require a centralized solver unit to obtain such a solution. In this case, designing

low-complexity algorithms with distributed implementation to compute local optimizers

becomes a more attractive option. To this end, we examine two simple and fast converging

algorithms with the following goals: (i) to obtain at least locally optimal solutions to the

problem, and (ii) to provide distributed implementation which requires neither a centralized

unit nor full CSI across the coordinated cells.
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5.3 The ILA Solution Approach for the Multicell MIMO-MAC

5.3.1 The ILA Algorithm for the Multicell MIMO-MAC

This section presents a solution approach to the original nonconvex problem (5.8) by re-

formlating it as a DC program [80,85,86]. Specifically, by iteratively isolating and approx-

imating the nonconvex part of the objective function, the DC program will be decomposed

into multiple convex optimization problems, which can be solved distributively at each MS

with low complexity. In addition, the iterative procedure allows the MSs to continuously

refine and improve their uplink precoders, which eventually yields a local optimal solution

of the original problem.

Denote fq(Xq,X−q) =
∑Q

r ̸=q ωrRr(Xq,X−q) as the WSR of all cells except cell-q so that

the network WSR can be expressed as ωqRq(Xq,X−q) + fq(Xq,X−q). Since fq(Xq,X−q) is

not a concave function in Xqi , we take the approximation to this term. At a given value

(X̄q, X̄−q), after taking the Taylor expansion of fq around X̄qi , i = 1, . . . , K, and retaining

the first linear term, we obtain

fq(Xq, X̄−q) ≈ fq(X̄q, X̄−q)−
K∑
i=1

Tr
{
Aqi

(
Xqi − X̄qi

)}
, (5.9)

whereAqi is the negative partial derivative of fq with respect toXqi , evaluated atXqi = X̄qi

Aqi = −
∂fq
∂Xqi

∣∣∣∣
Xqi=X̄qi

= −
Q∑

r ̸=q

ωr
∂Rr

∂Xqi

∣∣∣∣∣
Xqi=X̄qi

=

Q∑
r ̸=q

ωrH
H
rqi

R−1
r −

(
Rr +

K∑
j=1

HrrjXrjH
H
rrj

)−1
Hrqi

∣∣∣∣∣∣
Xqi=X̄qi

. (5.10)

Using (5.9), the network WSR around X̄q, ωqRq(Xq, X̄−q)+fq(Xq, X̄−q), can be approx-

imated as ωqRq(Xq, X̄−q)−
∑K

i=1Tr{AqiXqi} +
[
fq(X̄q, X̄−q) +

∑K
i=1Tr

{
AqiX̄qi

}]
. Since

the term fq(X̄q, X̄−q) +
∑K

i=1 Tr
{
AqiX̄qi

}
is now fixed, it does not affect the maximiza-

tion of the network WSR. As a result, it can be omitted in the objective function, i.e.,
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maximizing ωqRq(Xq, X̄−q) + fq(Xq, X̄−q) is equivalent to maximizing ωqRq(Xq, X̄−q) −∑K
i=1Tr{AqiXqi}, and the nonconvex problem (5.8) can be approximated as

maximize
Xq1 ,...,XqK

ωq log

∣∣∣∣∣Rq +
K∑
i=1

HqqiXqiH
H
qqi

∣∣∣∣∣−
K∑
i=1

Tr{AqiXqi} (5.11)

subject to Tr{Xqi} ≤ Pqi , ∀i

Xqi ≽ 0.

which can be solved solely at cell-q. In other words, the optimization problem (5.8) can be

approximately solved as Q per-cell separate optimization problems (5.11).

It is observed that the approximated problem (5.11) is similar to the MAC sum-rate

maximization problem, studied in [23]. The difference here is the presence of the penalty

term
∑K

i=1Tr{AqiXqi}, which encourages cell-q to adopt a more cooperative precoding

strategy by limiting the ICI to other cells. Should this term be absent, the multicell system

is said to be in competition mode where each cell would selfishly maximize the sum-rate for

its connected users only. This results in a noncooperative game among the cells, similar to

the game studied in [12] for the case of one MS per cell. We shall present some numerical

results for this noncooperative design in comparison to the considered coordinated design.

Note that the decomposed problem (5.11), corresponding to the precoder design at

cell-q, is now a convex program, unlike the original problem (5.8). Thus, it can be readily

solved by any efficient convex optimization technique [82]. However, these direct solution

approaches may require a centralized solver unit at the BS, and hence are not suitable for

distributed implementation at the MSs for the MAC. Fortunately, it is observed that the

constraints for each transmit covariance matrix Xqi are inherently decoupled in problem

(5.11). By exploring this decoupled structure, the optimization (5.11) can be solved se-

quentially over each variable matrix, like the MAC sum-rate maximization problem in [23].

More importantly, the optimization process over each variable can be performed at the

corresponding MS in a fully distributed manner. We elaborate these observations in the

following theorem and later propose a fast-converging and distributed algorithm to solve

problem (5.11).

Theorem 5.1. For the K-user problem (5.11),
{
Xqi

}K
i=1

is an optimal solution if and only
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if Xqi is the solution of the following optimization problem

maximize
Xqi

ωq log
∣∣∣I+R−1

qi
HqqiXqiH

H
qqi

∣∣∣− Tr{AqiXqi} (5.12)

subject to Tr{Xqi} ≤ Pqi ,Xqi ≽ 0,

where

Rqi = Rq +
K∑
j ̸=i

HqqjXqjH
H
qqj

(5.13)

is considered as noise.

Proof. The proof for this theorem follows the approach used in [23] for the sum-rate maxi-

mization in the MAC without the penalty components
∑K

i=1Tr{AqiXqi}. Before proceeding
to the main part of the proof, we briefly revisit the solution of problem (5.12), which was

previously given in [57].

Given µqi as the Lagrangian multiplier associated with the power constraint Tr{Xqi} ≤
Pqi , it was shown in [57] that the optimal solution X⋆

qi
must be in the form of

X⋆
qi
= GqiPqiG

H
qi
, (5.14)

whereGqi is the (normalized) generalized eigen-matrix of the pair of matrices ofHH
qqi
R−1

qi
Hqqi

and (Aqi +µqiI). The matrix Pqi is a non-negative diagonal matrix, obtained from the fol-

lowing WF solution

Pqi =
[
ωqΣ

(2)−1

qi
−Σ(1)−1

qi

]+
, (5.15)

where Σ(1)
qi

and Σ(2)
qi

are diagonal matrices given by

Σ(1)
qi

= GH
qi
HH

qqi
R−1

qi
HqqiGqi

Σ(2)
qi

= GH
qi
(Aqi + µqiI)Gqi .

In this solution, the dual variable µqi , behaving as the water-level in the WF process, is

adjusted to enforce the power constraint. Utilizing this optimal solution, we now show that

the optimal solution to the multiuser problem (5.11) is indeed a collection of solutions to

individual single-user problems (5.12).
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If part : Let {X̄qi}Ki=1 be the optimal solution to the original K-user problem (5.11).

Suppose that X̄qi is not the optimal solution of the corresponding problem (5.12) while

treating Rqi = Rq +
∑K

j ̸=iHqqjX̄qjH
H
qqj

as noise. Then fixing all other covariance matrices

X̄qj ,∀j ̸= i, solving problem (5.12) obtains the optimal solution X⋆
qi
. Clearly, X⋆

qi
strictly

increases the objective function of the original problem (5.11). Thus, this contradicts with

assumption on the optimality of {X̄qi}Ki=1.

Only if part : Consider the partial Lagrangian of problem (5.11)

L(Xqi ,µq) =
K∑
i=1

µqiPqi +ωq log

∣∣∣∣∣Rq +
K∑
i=1

HqqiXqiH
H
qqi

∣∣∣∣∣−
K∑
i=1

Tr {(Aqi + µqiI)Xqi} , (5.16)

where µq = [µq1 , . . . , µqK ]
T are the Lagrangian dual variables associated with the power con-

straints. For optimality, the solution of problem (5.11) must satisfy the following Karush-

Kuhn-Tucker (KKT) conditions

ωqH
H
qqi

(
Rq +

K∑
i=1

HqqiXqiH
H
qqi

)−1

Hqqi = Aqi + µqiI,∀i

µqi (Tr {Xqi} − Pqi) = 0, ∀i

µqi ≥ 0, ∀i.

For the case ofK = 1, it is straightforward to verify that the optimal solution of problem

(5.12), X⋆
qi

= GqiPqiG
H
qi
, with Pqi given in (5.15), satisfies the above KKT conditions.

However, the KKT conditions for the single-user case are different from that of the multiuser

case by the additional noise term
∑K

j ̸=iHqqjXqiH
H
qqj

. Thus, if each X⋆
qi
satisfies the single-

user condition while treating the signals of other MSs as noise, then collectively, the set of

{X⋆
qi
}Ki=1 must satisfy the above KKT conditions for the multiuser case. Then, {X⋆

qi
}Ki=1

must be the optimal solution to the original problem (5.11).

Since the structure of the optimal solution to problem (5.11) has been revealed in

Theorem 5.1, one can easily obtain its optimal solution by sequentially solving problem

(5.12) for each user, i.e., MS-1 to MS-K in cell-q, until convergence. We note that each

problem (5.12) can be effectively solved by the WF process, as presented in [57]. This

sequential optimization at cell-q accounts for the inner-loop iterative precoder updates of

the K MSs in cell-q.
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Algorithm 5.1: ILA Algorithm for Multicell MIMO-MAC

1 Initialize {Xqi}∀q,∀i, such that Tr{Xqi} = Pqi ;
2 repeat
3 X̄qi ← Xqi ;
4 for q = 1, 2, . . . , Q do
5 Compute Rq with X̄qi at BS-q and exchange among the BSs;
6 At BS-q, update the pricing matrix Aqi at MS-i and perform;
7 repeat
8 for i = 1, 2, . . . ,K do
9 Compute Rqi at the BS and pass it to MS-i;

10 Perform maximize
Xqi

ωq log
∣∣∣I+R−1

qi HqqiXqiH
H
qqi

∣∣∣− Tr {AqiXqi}, with

Tr{Xqi} ≤ Pqi at MS-i;

11 end

12 until convergence;

13 end

14 until convergence;

For the problem of Q cells (5.8), the proposed ILA algorithm requires each cell-q, q =

1, . . . , Q to continuously update the parameters {Aqi}Ki=1 and to take turns to solve its

corresponding optimization (5.11). This sequential procedure accounts for the outer-loop

iterative updates across the Q cells. We summarize the ILA algorithm for the multicell

MIMO-MAC in Algorithm 5.1. The convergence of the proposed ILA algorithm is given in

the following theorem.

Theorem 5.2. The Gauss-Seidel (sequential) iterative update always improves network

WSR and is guaranteed to converge to at least a local maximum.

Proof. Similar to the approach in [55, 57], the proof for this theorem is established by

showing that the network sum-rate is strictly nondecreasing after an update at any given

cell. Suppose that Xq = X̄q =
{
X̄qi

}K
i=1

,∀q from the previous outer-loop iteration, and

X⋆
q =

{
X⋆

qi

}K
i=1

as the optimal solution obtained at cell-q after the current outer-loop

iteration.

Similar to the technique applied in [57, 81], it can be easily shown that fq(Xq,X−q) is

a convex function with respect to Xqi ∈ Sqi , {Xqi|Xqi ≽ 0,Tr{Xqi} ≤ Pqi}. Thus, by the
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first-order condition for the convex function fq [82], one has

fq(X
⋆
q, X̄−q) ≥ fq(X̄q, X̄−q)−

K∑
i=1

Tr
{
Aqi(X

⋆
qi
− X̄qi)

}
(5.17)

with Aqi being defined in (5.10) at X̄qi .

After one Gauss-Seidel iteration, the network weighted sum-rate is updated such that

Q∑
q=1

ωqRq(X
⋆
q, X̄−q) = ωqRq(X

⋆
q, X̄−q) + fq(X

⋆
q, X̄−q)

≥ ωqRq(X
⋆
q, X̄−q) + fq(X̄q, X̄−q)−

K∑
i=1

Tr
{
Aqi(X

⋆
qi
− X̄qi)

}
≥ ωqRq(X̄q, X̄−q) + fq(X̄q, X̄−q)−

K∑
i=1

Tr
{
Aqi(X̄qi − X̄qi)

}
=

Q∑
q=1

ωqRq(X̄q, X̄−q),

where the first inequality is due to the one in (5.17), and the second inequality is due to

the fact that X⋆
q is the optimal solution of problem (5.11). Since the network sum-rate

is upper-bounded and nondecreasing after each update, the sequential optimization (5.11)

generates a Cauchy sequence that must converge to one of the local maxima.

It is worth mentioning that the proposed ILA algorithm can be executed by a central

controller, which then passes the local optimal precoders to the corresponding MSs. In

this case, the central controller must possess the full CSI knowledge of all channels in the

network. On the other hand, it is possible to implement the proposed ILA algorithm in a

distributed manner by assigning certain optimization steps in the algorithm to be performed

each coordinated BS and MS. To this end, we next present the interpretation to the ILA

algorithm that allows its distributed implementation. The complexity in implementing the

algorithm will be then discussed in Section 5.5.
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5.3.2 Distributed Implementation of the Proposed ILA Algorithm

In order to realize the distributed implementation of the proposed ILA algorithm, we make

the following assumptions:

• Assumption 1: Each MS, say MS-i of cell-q, knows the channel matrices Hrqi ’s to all

the BS-r’s in the network. This assumption allows the MS to control its induced ICI

to other cells.

• Assumption 2: The coordinated BSs have reliable backhaul channels to exchange

control information among themselves.

• Assumption 3: The channels are in block-fading or vary sufficiently slow such that

they can be considered fixed during the optimization being performed.

It is to be noted that Algorithm 5.1 involves two levels of computations. At the inner-

loop level, assuming Rq is known at BS-q and Aqi is known at MS-i, cell-q performs the

corresponding optimization (5.11) autonomously using the result from Theorem 5.1. The

role of BS-q is to measure the total signaling plus noise Rq +
∑K

i=1HqqiXqiH
H
qqi
, and then

pass this value to its connected MSs. MS-i in cell-q, knowing its channel to its BS Hqqi , can

compute the noise component Rqi . MS-i is then required to update its uplink covariance

matrix by solving the optimization (5.12). This process, which corresponds to the inner-

loop iterations, is performed until convergence in cell-q.

At the outer-loop level, each BS needs to exchange the data to compute the parameters

{Aqi}Ki=1 for the next update. It is observed from equation (5.10) that MS-i in cell-q needs

to know the channels Hrqi ’s to all the BSs (per Assumption 1), as well as the pricing matrix

Br = R−1
r −

(
Rr +

K∑
j=1

HrrjXrjH
H
rrj

)−1

, (5.18)

in order to compute Aqi . Thus, it is required that each BS computes its corresponding

price Bq, q = 1, . . . , Q, using local measurements on the IPN Rq and the total signal plus

IPN Rq +
∑K

i=1HqqiXqiH
H
qqi
. These factors are then exchanged among the BSs. Using the

messages received from other cells, BS-q then can easily pass {Br}r ̸=q to its connected MSs

before the inner-loop iterative procedure. The outer-loop iteration is performed until the

WSR reaches to a local maximum, as stated in Theorem 5.2.
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Remark 5.1: It is shown in Theorem 5.2 that the proposed ILA algorithm allows the

uplink precoders to be refined and improved after each Gauss-Seidel update, which ulti-

mately converges to a local maximum. However, this update mechanism requires all the

BSs to compute the pricing matrices Bq’s and exchange them within the network after one

cell updates its precoding matrices. To reduce the amount of information exchanges among

the coordinated cells, the proposed algorithm can be also implemented using the Jacobi

(simultaneous) iterative update. In particular, after the exchange of the pricing matrices,

all the cells simultaneously update their precoding matrices. Specifically, the inner-loop

iterations can be performed independently and concurrently in each cell. Although the

convergence of the Jacobi update is not analytically proved, numerical simulations confirm

its rapid convergence rate. Thus, in our simulations for the ILA algorithm, we utilize the

Jacobi update instead of the Gauss-Seidel to reduce the computational time.

Remark 5.2: When the multicell MIMO-MAC system operates under the competition

mode, the update of the precoders across the Q cells also involves two levels of iterations.

In an outer-loop iteration, each BS, say BS-q, needs to measure its IPN covariance matrix

Rq. In an inner-loop iteration, BS-q needs to continuously measure and pass its total

signal plus IPN Rq +
∑K

i=1HqqiXqiH
H
qqi

to its K connected MSs, while the MSs at cell-q

take turns to selfishly maximize the MAC sum-rate of cell-q by the IWF procedure [23].

Compared to this competition mode, the ILA algorithm requires the inter-BS signaling in

each outer-loop iteration for exchanging the pricing matrices Bq’s. However, the pricing

matrices Br, r ̸= q are required to be passed from BS-q to its K connected MSs only once

before the inner-loop iterations. Thus, the ILA algorithm does require a similar amount of

intra-cell BS-MS signaling as the competition mode.

5.4 The WMMSE Solution Approach for the Multicell

MIMO-MAC

5.4.1 The WMMSE Algorithm for the Multicell MIMO-MAC

In Section 5.3, we have examined a linear convex approximation technique to solve the

nonconvex optimization problem (5.8) by successively improving the uplink covariance ma-

trices at the MSs. In this section, we examine a different approach to solve this optimization

problem by relating it to a matrix-weighted sum-MSE minimization problem. In particular,
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the new problem of interest is to alternatively find the transmit beamformers Vqi ’s and

their corresponding receive beamformers Uqi ’s, which shall be characterized shortly.

With Vqi ’s as the variables to be optimized, the optimization problem (5.8) can be

restated as

maximize
{Vqi}∀i,∀q

Q∑
q=1

ωq

K∑
i=1

Rqi (5.19)

subject to Tr{VqiV
H
qi
} ≤ Pqi , ∀i, ∀q,

where the achievable rate Rqi , given in (5.6), can be rewritten as

Rqi = log

∣∣∣Zq +
∑Q

r ̸=q

∑K
j=1HqrjVrjV

H
rj
HH

qrj
+
∑K

j=iHqqjVqjV
H
qj
HH

qqj

∣∣∣∣∣∣Zq +
∑Q

r ̸=q

∑K
j=1HqrjVrjV

H
rj
HH

qrj
+
∑K

j>i HqqjVqjV
H
qj
HH

qqj

∣∣∣ . (5.20)

It is to be noted that this achievable rate can be stated as a function of the error

covariance matrix after the MMSE receive filtering. Since SIC is applied at each BS to its

connected MSs, the signal from user-i is not corrupted by the intra-cell interference from

user-i to user-(i − 1). Thus, while treating the interference as noise, the estimated signal

for user-i in BS-q is then given by

ŝqi = UH
qi

(
K∑
j=i

HqqjVqjsqj + zq

)
, (5.21)

where UH
qi
is the linear receive beamformer for user-i. This receive beamformer is designed

such that the MSE for the data streams from user-i of cell-q is minimized. As the MSE

matrix Eqi is obtained from

Eqi = E
[
(ŝqi − sqi)(ŝqi − sqi)

H
]

=
(
I−UH

qi
HqqiVqi

) (
I−UH

qi
HqqiVqi

)H
+

K∑
j>i

UH
qi
HqqjVqjV

H
qj
HH

qqj
Uqi

+

Q∑
r ̸=q

K∑
j=1

UH
qi
HqrjVrjV

H
rj
HH

qrj
Uqi +UH

qi
ZqUqi , (5.22)
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the optimal receive beamformer is indeed the well-known MMSE filter

Uqi = argmin
Uqi

Tr {Eqi}

=

(
K∑
j=i

HqqjVqjV
H
qj
HH

qqj
+

Q∑
r ̸=q

K∑
j=1

HqrjVrjV
H
rj
HH

qrj
+ Zq

)−1

HqqiVqi . (5.23)

Consequently, the MMSE matrix for user-i in cell-q is given by

EMMSE
qi

= I−UH
qi
HqqiVqi

=

[
I+VH

qi
HH

qqi

(
K∑
j>i

HqqjVqjV
H
qj
HH

qqj

+

Q∑
r ̸=q

K∑
j=1

HqrjVrjV
H
rj
HH

qrj
+ Zq

)−1

HqqiVqi

−1

. (5.24)

Given (5.20) and (5.24), the relationship between the data rate and the MMSE matrix

can be stated as

Rqi = log
∣∣∣(EMMSE

qi

)−1
∣∣∣ . (5.25)

Utilizing this relationship, we establish the equivalence between the WSR maximization

problem in the multicell MIMO-MAC and the matrix-weighted sum-MSE minimization in

the following theorem.

Theorem 5.3. The multicell MIMO-MAC WSR maximization problem (5.19) is equivalent

to the following matrix weighted sum-MSE minimization

minimize
Wqi ,Vqi ,Uqi

Q∑
q=1

ωq

K∑
i=1

[
Tr {WqiEqi} − log |Wqi|

]
(5.26)

subject to Tr
{
VqiV

H
qi

}
≤ Pqi ,∀q,∀i,

where Wqi ≽ 0 is the weight matrix for MS-i at cell-q. In particular, the globally optimal

solutions {V}∀q,∀i are identical for the two problems.

Proof. The proof for this theorem is in the same spirit as the proof in [33, 58] for the case

of downlink transmission. First, it is noticed that there are no constraints to the weight

matrices Wqi ’s and the receive beamformers Uqi ’s in problem (5.26). Fixing all other
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variables, the optimal weight matrices Wqi ’s are given by

Wqi = E−1
qi

= I−UH
qi
HqqiVqi . (5.27)

On the other hand, the optimal receive beamformers Uqi ’s to problem (5.26) are the MMSE

receivers, given in (5.23). Thus, with the optimal Wqi ’s and Uqi ’s, the following optimiza-

tion problem is equivalent to problem (5.26)

minimize
{Vqi}∀i,∀q

Q∑
q=1

ωq

K∑
i=1

log
∣∣EMMSE

qi

∣∣ (5.28)

subject to Tr
{
VqiV

H
qi

}
≤ Pqi ,∀q, ∀i.

This problem is indeed the WSR maximization problem for the multicell MIMO-MAC

(5.19), due to the connection between the MMSE matrix EMMSE
qi

and the rate Rqi given in

(5.25).

Having established the equivalence between the two optimization problems (5.19) and

(5.26), we now proceed to solve the latter problem. Note that the objective function in

(5.26) is convex in each of the optimization variables Uqi ,Vqi ,Wqi . Thus, it is possible

to solve problem (5.26) by alternately optimizing one of the variables while fixing the

other two until convergence. First, with fixed transmit beamformers Vqi ’s, the receive

beamformers Uqi ’s are optimally designed as in (5.23). Second, fixing the transmit and

receive beamformers Vqi ’s and Uqi ’s, the weighted-matrices Wqi ’s are updated in a closed

form solution, given in (5.27). Finally, by decomposing the objective function in (5.26), the

update of the transmit beamformers Vqi ’s are carried by solving decoupled optimization

problems across the MSs

minimize
Vqi

ωqTr
{
Wqi

(
I−UH

qi
HqqiVqi

) (
I−UH

qi
HqqiVqi

)H}
+ωq

i−1∑
j=1

Tr
{
WqjU

H
qj
HqqiVqiV

H
qi
HH

qqi
Uqj

}

+

Q∑
r ̸=q

K∑
j=1

ωrTr
{
WrjU

H
rj
HrqiVqiV

H
qi
HH

rqi
Urj

}
(5.29)

subject to Tr
{
VqiV

H
qi

}
≤ Pqi .
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It is to be noted that this optimization can be carried independently and simultaneously

across the MSs. As stated in [33,58], this problem is a convex quadratic program, which can

be optimally solved by standard optimization techniques. Using the Lagrangian duality,

the optimal solution to (5.29) can be derived as

Vqi = ωq

(
Q∑

r ̸=q

K∑
j=1

ωrH
H
rqi
UrjWrjU

H
rj
Hrqi

+
i∑

j=1

ωqH
H
qqi
UqjWqjU

H
qj
Hqqi + µ⋆

qi
I

)−1

HH
qqi
UqiWqi , (5.30)

where µ⋆
qi
is the optimal Lagrangian multiplier associated with the power constraint at the

MS. It is noticed that in case of µ⋆
qi
= 0 resulting in Tr

{
VqiV

H
qi

}
< Pqi , the corresponding

MS effectively does not transmit at full power. Otherwise, µ⋆
qi
can be easily obtained by

the bisection method such that the power constraint is met with equality.

Algorithm 5.2: WMMSE Algorithm for Multicell MIMO-MAC

1 Initialize {Vqi}∀q,∀i, such that Tr{VqiV
H
qi } = Pqi .

2 repeat
3 Set V̄qi ← Vqi , ∀q, ∀i.
4 Simultaneously update across Q cells
5 for q = 1, . . . , Q do
6 At the BS, sequentially update the receive beamformers and weight matrices;
7 for i = 1, . . . ,K do

8 Uqi ←

(
K∑
j=i

HqqjVqjV
H
qjH

H
qqj +

Q∑
r ̸=q

K∑
j=1

HqrjVrjV
H
rjH

H
qrj + Zq

)−1

HqqiVqi ;

9 Wqi ←
(
I−UH

qiHqiVqi

)−1
;

10 end
11 At the K MSs, simultaneously update the transmit matrices;
12 Vqi←

ωq

(
i∑

j=1
ωqH

H
qqiUqjWqjU

H
qjHqqi+

Q∑
r ̸=q

K∑
j=1

ωrH
H
rqiUrjWrjU

H
rjHrqi+µ⋆

qiI

)−1

HH
qqiUqiWqi , ∀i;

13 end

14 until convergence;

We summarize the proposed WMMSE algorithm for the multicell MIMO-MAC as in

Algorithm 5.2. In this algorithm, at each outer-loop iteration, the updates can be performed
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simultaneously across the Q coordinated cells. At each cell-q, the corresponding BS-q

sequentially updates the receive beamformers Uqi and the weight matrices Wqi for its

MS-i for i from 1 to K. After that, the transmit beamformers Vqi ’s can be updated

simultaneously by its MS-i. The iterative process is performed until each variable converges

to a locally optimal solution.

We summarize the convergence and the optimality of the proposed WMMSE algorithm

in the following theorem.

Theorem 5.4. The alternating minimization process in the proposed WMMSE algorithm

results in a monotonic decrease of the objective function in problem (5.26). For any limit

point (W⋆
qi
,U⋆

qi
,V⋆

qi
) that is the minimizer of problem (5.26), V⋆

qi
is also a local minimizer

of the original problem (5.19).

Proof. Denote

f({Vqi}) =
Q∑

q=1

ωq

K∑
i=1

log
∣∣∣EMMSE

qi

∣∣∣ (5.31)

and

g({Uqi}, {Wqi}, {Vqi})

=

Q∑
q=1

ωq

K∑
i=1

[
Tr {WqiEqi} − log |Wqi|

]
(5.32)

as the cost functions of the original problem (5.19) and the restated WMMSE problem

(5.26).

Since the constraint set of problem (5.26) is decoupled for the variables Uqi ,Wqi ,Vqi ,

applying the block coordinate descent method by alternatively minimizing overUqi ,Wqi ,Vqi

must decrease its cost function monotonically [89]. In addition, if the power constraint on

Vqi is upper-bounded, the cost function (5.32) is lower-bounded. Thus, the proposed

WMMSE must monotonically converge to at least a local minimum of the cost function

(5.32). Note that the cost function of the original sum-rate maximization problem (5.19)

does not necessarily improve after each iteration. However, given (U⋆
qi
,W⋆

qi
,V⋆

qi
) as a local

minimizer of problem (5.26) obtained from the WMMSE algorithm, it can be proved that

V⋆
qi
is also a local minimizer of the original problem (5.19) as follows.
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First, we need to show that the gradients of f(·) and g(·) with respect to Vqi are the

same at V⋆
qi
. Similar to the approach in [33, 58], evaluating the gradients of f(·) and g(·)

at the (m,n)-element of Vqi , one has

∂f({Vqi})
∂[Vqi ]m,n

∣∣∣∣
Vqi=V⋆

qi

=

Q∑
r=1

ωr

K∑
j=1

∂ log
∣∣EMMSE

rj
(Vqi)

∣∣
∂[Vqi ]m,n

∣∣∣∣∣
Vqi=V⋆

qi

=

Q∑
r=1

ωr

K∑
j=1

Tr

{(
EMMSE

rj
(V⋆

qi
)
)−1

×
∂EMMSE

rj
(Vqi)

∂[Vqi ]m,n

∣∣∣∣∣
Vqi=V⋆

qi

}
,

(5.33)

and

∂g({Uqi}, {Wqi}, {Vqi})
∂[Vqi ]m,n

∣∣∣∣
Vqi=V⋆

qi
,Uqi=U⋆

qi

=

Q∑
r=1

ωr

K∑
j=1

Wrj

∂Erj(Uqi ,Vqi)

∂[Vqi ]m,n

∣∣∣∣
Vqi=V⋆

qi
,Uqi=U⋆

qi

=

Q∑
r=1

ωr

K∑
j=1

W⋆
rj

∂Erj(U
⋆
qi ,Vqi)

∂[Vqi ]m,n

∣∣∣∣
Vqi=V⋆

qi

. (5.34)

Since W⋆
rj

=
(
EMMSE

rj
(V⋆

qi
)
)−1

=
(
Erj(U

⋆
qi
,V⋆

qi
)
)−1

, this yields the equivalence between

(5.33) and (5.34). In addition, because (U⋆
qi
,W⋆

qi
,V⋆

qi
) is a local minimizer of problem

(5.26), it must satisfy the stationarity condition:

Tr
{
∇Vqi

g(U⋆
qi
,W⋆

qi
,V⋆

qi
)H(Vqi −V⋆

qi
)
}
≤ 0, ∀Vqi . (5.35)

Conversely, due to the equivalence between (5.33) and (5.34), V⋆
qi
also satisfies the station-

arity condition:

Tr
{
∇Vqi

f(V⋆
qi
)H(Vqi −V⋆

qi
)
}
≤ 0,∀Vqi . (5.36)

Thus, Vqi must be also a local minimizer to the original problem (5.19).

Like the ILA algorithm, the WMMSE algorithm can be implemented either at a central

controller or distributively across the BSs and MSs, as discussed in the following section.

The complexity in implementing the WMMSE algorithm will be addressed in Section 5.5.
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5.4.2 Distributed Implementation of the Proposed WMMSE Algorithm

Note that the proposed WMMSE algorithm is executed by alternately computing the re-

ceive beamformers and the weight matrices at the BSs and computing the transmit beam-

formers at the MSs. Under the same assumptions stated in Section 5.3.2, the WMMSE

algorithm can be implemented in a distributed manner as follows.

At the receiving end, each BS, say BS-q, needs to locally measure its IPN covariance

matrix Rq and estimate the transmit beamformers Vqi from its connected MSs. Knowing

the decoding order, BS-q updates its receive beamformers Uqi ’s and the weight matrices

Wqi ’s with local information as stated in (5.23) and (5.27). BS-q then computes the

matrix ωq

∑K
i=1 UqiWqiU

H
qi
and exchanges it to the other coordinated BSs in the network.

Subsequently, BS-q passes the updated matrices ωr

∑K
j=1UrjWrjU

H
rj
’s as well as the matrix

ωq

∑i
j=1UqjWqjU

H
qj
to its ith connected MS. At the transmitting end, MS-i then optimizes

its transmit beamforming Vqi within its power limit as stated in (5.29) and feeds back the

updated Vqi to BS-q.

Remark 5.3: In comparison to the sequential update in the ILA algorithm, the proposed

WMMSE algorithm allows simultaneous updates across the coordinated BSs and across

the MSs. This is due to the fact that the updating steps for the receive beamformers

Uqi ’s and the weight matrices Wqi ’s are decoupled among the BSs, whereas the updating

steps for the transmit beamformers Vqi ’s are decoupled among the MSs. Between the two

periods of simultaneous updates at BSs and at MSs, the BSs need to exchange the matrices

ωq

∑K
i=1UqiWqiU

H
qi
’s.

5.5 Complexity of the Proposed Algorithms

In this section, we analyze the complexity in implementing the proposed ILA and WMMSE

algorithms in a multicell system. Similar to the approach used in [58], the complexity of

each algorithm is analyzed in each outer-loop iteration. Note that an outer-loop iteration

can be also defined as an instance of signaling exchange among the BSs. To simplify

the complexity analysis, let us denote L = max{M,N}. In Table 5.1, we enumerate

the complexity in undertaking the operations (by computing the listed variables) at each

iteration as well as the total complexity of each algorithm. In addition, if an algorithm is to

be implemented in a distributed manner, Column 3 “Message Type” in Table 5.1 classifies
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Table 5.1 Complexity of the Proposed Algorithms

Algorithm Operation Message Complexity Number Total Complexity
Type of

Operations

ILA Rq in (5.5) BS-Local O(KQL3) Q O(KQ2L3)
Bq in (5.18) BS ↔ BS O(KL3) Q O(KQL3)

BS ↔ MS
Rqi in (5.13) BS ↔ MS O(KL3) K O(K2L3)
Aqi in (5.10) MS-Local O(QL3) K O(KQL3)
Xqi in (5.14) MS-Local O(L3) K O(KL3)

Gauss-Seidel O(KQ3L3 +K2QL3)
Jacobi O(KQ2L3 +K2QL3)

WMMSE Rq in (5.5) BS-Local O(KQL3) Q O(KQ2L3)
Uqi in (5.23) BS-Local O(L3) KQ O(KQL3)
Wqi in (5.27) BS-Local O(L3) KQ O(KQL3)

ωq

∑K
i=1 UqiWqiU

H
qi BS ↔ BS O(KL3) Q O(KQL3)

BS ↔ MS

ωq

∑i
j=1 UqiWqiU

H
qi BS ↔ MS O(L3) KQ O(KQL3)

Vqi in (5.30) MS-Local O(L3) KQ O(KQL3)
WMMSE O(KQ2L3)

whether an operation is taken at the BS, i.e., BS-Local, or at the MS, i.e., MS-Local.

The column also classifies whether a variable obtained from its corresponding operation is

passed as a signaling message among the BSs, i.e., BS ↔ BS, or between the BS and its

connected MSs, i.e., BS ↔ MS. We elaborate the content of Table 1 in the following.

In the ILA algorithm, at each iteration, the covariance matrix of the ICI plus noise

Rq must be computed at BS-q. As given in (5.5), Rq is approximately the summation

of KQ components, where matrix multiplication in each component HqriXriHqri yields

the complexity of O(L3). Thus, the complexity of computing Rq is O(KQL3). Similarly,

the calculation of each pricing matrix Bq in (5.18) involves two matrix inversions and a

summation of K components HqqiXqiHqqi yields the complexity of O(KL3). The same

technique can be applied to the calculations of Rqi , Aqi , and Xqi . With the Gauss-Seidel

update, only one cell at the time, say cell-q, updates its K matrices Aqi , i = 1, . . . , K,

which yields the complexity of O(KQL3). The optimization at cell-q then involves the

calculation of the noise matrices Rqi ’s and their inverses. Thus, ignoring the few iterations

by the bisection step in optimizing the transmit covariance at each MS, this optimization

shall take the complexity of O(K2L3). Consequently, in order to sequentially update all

the transmit covariances across all Q cells, one has the complexity of O(KQ3L3+K2QL3).
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On the contrary, with the Jacobi update, all the precoders can be updated simultaneously

across the Q cells after each instance of calculating the IPN matrices Rq’s and the pricing

matrices Bq’s. In this case, the complexity of the ILA algorithm with the Jacobi update is

O(KQ2L3 +K2QL3), which is lower than that with the Gauss-Seidel update by a factor

of Q.

Similar to the complexity analysis of the ILA algorithm, the complexity of the WMMSE

algorithm can be found to be O(KQ2L3). First, calculating the IPN covariance matrices

Rq, q = 1, . . . , Q, and the signaling messages ωq

∑K
i=1UqiWqiU

H
qi
, q = 1, . . . , Q, yields the

overall complexity of O(KQ2L3). Second, utilizing the calculated IPN matrix Rq at BS-q,

the receive beamformers Uqi ’s and weight matrices Uqi ’s can be updated sequentially from

MS-1 (first) to MS-K (last), which yields the overall complexity of O(KQL3). Third, the

complexity of updating KQ transmit beamformers Vqi ’s is O(KQL3). Thus, per outer-

loop iteration, in order to update the receive beamformers, the weight matrices, and the

transmit beamformers for Q cells in the network, the complexity of the WMMSE algorithm

is O(KQ2L3), which is comparable to that of the ILA algorithm with the Jacobi update.

Remark 5.4: In terms of total computational complexity, the distributed implementa-

tion of each algorithm is roughly the same as the its centralized implementation. In terms

of implementation, the distributed approach requires certain message passing among the

coordinated BSs and MSs, as detailed in Table 5.1. In addition, Table 5.1 also quantifies

the number of messages that need to be exchanged at each outer-loop iteration. In the

distributed implementation structure, the computation load in the optimization process

can be shared across the coordinated BSs and MSs.

5.6 Simulation Results

This section presents simulation results on the achievable sum-rate of a multicell system

in the uplink transmission under various levels of coordination and on the convergence

behaviors of the proposed ILA and WMMSE algorithms. We compare the results for

three operating modes: (i) the coordination mode obtained from the proposed ILA and

WMMSE algorithms (with equal weight for each cell), (ii) the competition mode where

each cell selfishly maximizes the sum-rate for its connected MS only, and (iii) the network

MIMO mode where the whole system is a single large MIMO MAC channel. Considered is

a 3-cell system, where the distance between any two BSs is normalized to 2, as illustrated
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in Fig. 5.1. The number of MSs is set to 3 per cell, unless stated otherwise, and each MS

is randomly located on a circle at distance d from its connected BS. The BS and MS are

equipped with 4 and 2 antennas, respectively. The transmit power of each MS is limited

to 1 W. The intra-cell and inter-cell channel coefficients are generated as products of two

components: one accounts for the large-scale fading with a path loss exponent of 3 and one

represents the small-scale fading using i.i.d. complex Gaussian random variables with zero

mean and unit variance. The AWGN power spectral density σ2 is set at 0.01 W/Hz.

BS1
BS2BS3

MS1
MS2

MS3
MS4d

MS5
MS6

MS7
MS8MS9

( )0, 3

( )1,0( )1,0−

Fig. 5.1 A multiuser multicell system with 3 cells and 3 MSs per cell. Each
MS is randomly located at a distance d from its connected BS.

We first investigate the achievable network sum-rates versus the intra-cell MS-BS dis-

tance d of the various algorithms, which are run until convergence. As d is varied, 10, 000

channel realizations at each value of d are used to obtain the average network sum-rates

plotted in Fig. 5.2. As shown in the figure, when the distance d becomes smaller, the net-

work sum-rate increases in all 3 operating modes. This is due to the increase in strength

of intra-cell channels and the reduction in the strength of inter-cell channels. Out of the 3

operating modes, network MIMO obtains the largest sum-rate, as it is the upper bound for

any uplink multicell transmission scheme. It is also observed that by implementing the in-

terference coordination among the cells using the proposed algorithms (ILA and WMMSE),
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Fig. 5.2 Network sum-rates under the considered operating modes.

one can improve the network sum-rate by 5 to 15 b/s/Hz over the competition mode, es-

pecially in the high ICI region (large d). Note that the performances of the coordination

mode are obtained from the same initialization with VqiV
H
qi

= Xqi = (Pqi/N)I for both

ILA and WMMSE algorithms. Fig. 5.2 shows that there is literally no difference in the per-

formances obtained from the ILA and WMMSE algorithms with the same identity matrix

starting point. In other words, they both converge to the same local maximum.

As the proposed ILA and WMMSE algorithms do not guarantee a globally optimal per-

formance, it is interesting to investigate the effects of the starting point on their achieved

network sum-rate. For this, we run simulations for 10 different randomly generated starting

points and record the best sum-rate result out of the 10 fully converged maxima for each

algorithm. The resulting plots for the 2 proposed algorithms designated by ILA-10 random,

and WMMSE-10 random, in Fig. 5.3 show a negligible performance difference between the

two proposed algorithms, and a slightly increased network sum-rate as compared to the case

with identity matrix starting point in Fig. 5.2. This close performance indicates that the

identity matrix is a good and simple choice for the starting point. As previously discussed,

both the proposed ILA and WMMSE algorithms exhibit the monotonic convergence, but
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Fig. 5.3 Network sum-rates under the coordination mode, obtained from
the ILA and WMMSE algorithms with 10 random starting points or with 10
outer-loop iterations.

require the coordinated cells to exchange signaling information after each outer-loop iter-

ation. For practical implementation, it may be desirable to limit the number of iterations

in order to reduce the amount of signaling exchange and it is interesting to understand

the effect of number of iterations on their performance. For illustration, we include in Fig.

5.3 the plots ILA-10 iteration, WMMSE-10 iteration, and Competition-10 iteration repre-

senting the achieved network sum-rates after 10 outer-loop iterations of the ILA, WMMSE

algorithms and competition mode, respectively. The simulation results in Fig. 5.3 indicate

that the ILA algorithm is faster to converge than the WMMSE algorithm in terms of the

number of outer-loop iterations. Both algorithms outperform the competition mode after

just 10 iterations. Note that the ILA algorithm in this simulation is implemented with the

Jacobi update. Thus, it requires a similar amount of inter-BS signaling as the WMMSE

algorithm.

To investigate further their convergence behavior, we obtain simulation results for a

specific channel realization with d = 0.5 and plot the network sum-rates achieved after

each outer-loop iteration by ILA using Jacobi and Gauss-Seidel updates, the WMMSE, and



5.6 Simulation Results 109

0 10 20 30 40
0

20

40

60

80

Number of Outer−loop Iterations

A
ch

ie
va

bl
e 

N
et

w
or

k 
S

um
−

ra
te

 (
bi

ts
/s

/H
z)

 

 

ILA − Jacobi
ILA − Gauss−Seidel
WMMSE
Competition

0 5 10
50

60

70

Fig. 5.4 Convergence of the proposed ILA and WMMSE algorithms to max-
imize the network sum-rate with the coordination.

competition (for comparison). As observed in Fig. 5.4, the coordination mode, obtained

by the ILA and WMMSE algorithms, offers higher network sum-rate than the competition

mode. It is also observed that the ILA algorithm does monotonically converge with both

Jacobi and Gauss-Seidel updates. The network sum-rate is also improved monotonically by

the WMMSE algorithm. These convergence behaviors of the ILA and WMMSE algorithms

agree with our analysis. Interestingly, Fig. 5.4 confirms that the ILA algorithm has a faster

convergence than the WMMSE algorithm in terms of number of outer-loop iterations. This

observation explains why the ILA algorithm obtains better sum-rate performance than the

WMMSE algorithm after 10 outer-loop iterations as shown in Fig. 5.3.

As previously discussed, the WMMSE algorithm has only outer-loop iterations while

ILA has both inner- and outer-loop iterations. To investigate its inner-loop convergence, in

Fig. 5.5, we plot the sum-rate achieved at cell-1 after each number of inner-loop iterations

by the ILA, for the same channel realization used in Fig. 5.4, and at outer-loop iteration #2

(when Aqi ’s are non-zero). Note that the inner-loop iterations in the ILA algorithm is to to

maximize the MAC sum-rate with penalty terms (5.11). For comparison, the convergence
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Fig. 5.5 Convergence of the proposed iterative algorithm to solve Problem
(5.11).

of inner-loop iterations in the competition mode, i.e., the IWF algorithm for MAC sum-rate

maximization [23], is also illustrated. Fig. 5.5 indicates that, at the outer-loop iteration

#2, due to the penalty terms, the ILA inner-loop algorithm achieves lower sum-rate in

cell-1 than the competition mode (without the penalty terms). However, as the cell adopts

a more cooperative strategy by limiting the ICI to other cells, the overall network sum-rate

performance is indeed improved, as shown in Fig. 5.4.

Finally, Fig. 5.6 compares the CPU running time of the proposed ILA and WMMSE

algorithms versus the number of MSs in each cell under the same termination criterion.

Although the CPU running time is rather relative, all algorithms are programmed with the

same code implementation and run on the same platform, which allows us to realize the

relative trend in computational complexity of each algorithm. As shown in the figure, the

ILA algorithm with the Jacobi update shall improve the running time over that with the

Gauss-Seidel update roughly by a factor of Q = 3. Interestingly, while the WMMSE re-

quires more outer-loop iterations, i.e., more inter-BS signaling exchange, it has less running

time than the ILA algorithm. Intuitively, the WMMSE does not require the inner-loop it-
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Fig. 5.6 Average CPU time versus the number of MSs per cell.

erations, while the ILA algorithm does for sequentially optimizing precoders at a particular

cell. Thus, the WMMSE algorithm imposes less intra-cell BS-MS operation and signaling

than the ILA algorithm. In fact, the running time of the WMMSE algorithm is almost

linear with K, as our complexity analysis indicates.

5.7 Concluding Remarks

This chapter examined the problem of WSR maximization in the multicell MIMO MAC.

Under the coordination mode among the multiple cells, the network WSR maximization

problem was shown to be nonconvex. The chapter then proposed two solution approaches,

namely ILA and WMMSE, to approximate and transform the original nonconvex problem

into convex optimization ones. In the ILA approach, the nonconvex optimization problem

is successively approximated and decomposed into a set of convex problems, which can be

solved distributively at each MS. In the WMMSE algorithm, by transforming the origi-

nal problem into a weighted MSE minimization problem, the network WSR is maximized

by alternatively optimizing the weight matrices and MMSE decoders at each BS and the
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precoder at each MS. Simulations confirmed the convergence analysis of the proposed al-

gorithm and showed a significant enhancement in the network sum-rate as compared to

competitive design.
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Chapter 6

Sum-rate Maximization in the

Multicell MIMO Broadcast Channel

with Interference Coordination

6.1 Introduction

Optimizing the precoding designs in an interference network is a challenging task due to

the nonconcavity of the WSR function. Different numerical methods for designing the

precoders that maximize the WSR have been investigated in the literature [55, 57, 81].

Specifically, the gradient projection method was applied in [81] to search for a locally

optimal transmit strategy. Successive convex approximation was applied in [55, 57] to

decompose the original nonconvex problem into a sequence of simpler convex problems,

which can be solved separately at the transmitters. Note that these works only considered

the network with one MS per cell. For a more general case of multiple MSs per cell,

recent works in [9,58,92] studied the optimal linear precoding to maximize the WSR with

per-BS constraints. Specifically, an iterative algorithm was proposed in [9] to solve the

KKT conditions of the nonconvex WSR maximization problem. Another solution approach

to the nonconvex WSR maximization problem is to transform it into a minimization of

the weighted mean squared error (WMMSE) problem [33, 58, 87]. The WMMSE problem

The materials presented in Chapter 6 have been presented at the 2013 IEEE International Confer-
ence on Communications in Budapest, Hungary [90], and submitted to the IEEE Transactions on Signal
Processing [91].
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then can be solved by iteratively optimizing the weight matrices, the MMSE precoders,

and the MMSE decoders [33]. Thus, by establishing the equivalence between the WSR

maximization problem and the WMMSE minimization problem, a locally optimal solution

to the former can be found from the solution of the latter.

In this chapter, we consider a coordinated multicell system in a general setting with

multiple MSs per cell, where each BS or MS is equipped with multiple transmit anten-

nas. In each cell, the BS concurrently transmits information signals to its connected MSs,

which emulates a MIMO broadcast (MIMO-BC) system. The main focus of this chapter

is to jointly optimize the precoding covariance matrices at the BSs in order to maximize

the network-wide WSR under the IC mode. While most of the works considered linear

precoding at each BS for the multicell MIMO-BC system [9,10,55,57,58,61,73,81,92], our

focus in this chapter is on nonlinear precoding design. Specifically, in the BC with multiple

MSs per cell, each BS utilizes dirty-paper coding (DPC) to encode the data for the MSs

within its cell. It is well-known that DPC is the capacity-achieving multiuser precoding

technique for a single-cell system [25–28]. In this chapter, we extend the study of DPC

onto the multicell system with interference coordination. This consideration potentially al-

lows the multicell network to realize extra performance from the nonlinear precoding over

the linear precoding. Since the maximization of WSR in a multicell MIMO-BC with DPC

is a nonconvex problem, finding its globally optimal solution is computationally complex.

To address this concern, we consider two low-complexity solution approaches, namely ILA

and WMMSE, to numerically search for at least locally optimal solutions of the problem.

Note that the two aforementioned solution approaches were applied to effectively solve the

WSR maximization problem in the multicell MIMO-MAC in Chapter 5. In this chapter,

we show how each approach can be adopted to locally maximize the WSR in the multicell

MIMO-BC.

In the ILA solution approach, the sum-rate function at all cells except a particular cell

under consideration is approximated into a linear interference penalty. Thus, maximizing

the network WSR is equivalent to maximizing the BC sum-rate with DPC at the given cell

while minimizing a penalty term on the ICI generated by its corresponding BS. Although

this per-cell BC problem is yet to be convex, we show that the problem is equivalent to

the one in the multiple-access channel (MAC) via the so-called BC-MAC duality. Since

the MAC problem is convex and thus optimally solved, the optimal solution to the BC

problem is also obtained by the MAC-BC transformation [28]. Interestingly, it will be
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proved that the network WSR is always improved by optimizing the DPC precoders at any

given BS. With the ILA algorithm, each BS is required to iteratively take turn and refine

its precoders. We then prove the monotonic convergence of the ILA algorithm to at least

a local maximum. In addition, we develop a message exchange mechanism that allows the

proposed algorithm to be implemented in a fully distributed manner.

In the WMMSE solution approach, we devise a version of the WMMSE algorithm for

the multicell MIMO-BC with DPC precoding. To avoid the confusion with the original

WMMSE algorithm for the case of linear precoding in [58], the newly devised algorithm

will be referred to as the DPC-WMMSE algorithm. Similar to the original WMMSE

algorithm, we show that the DPC-WMMSE can obtain a locally optimal solution to the

multicell MIMO-BC WSR maximization problem. In addition, the DPC-WMMSE can

be implemented distributively via a message exchange mechanism among the coordinated

BSs. Simulation results confirm the convergence analysis of the ILA and DPC-WMMSE

algorithm, and show that the proposed algorithm significantly improves the network WSR,

in comparison with linear precoding or with no IC between the BSs.

6.2 System Model and Problem Formulation

The system model considered in this chapter is the same as in Chapter 4. Consider the

downlink transmission of a multicell system with Q separate cells operating on the same

frequency. In each cell, a multiple-antenna BS concurrently sends independent data streams

to multiple MSs, each equipped with multiple transmit antennas. For simplicity in pre-

sentation, it is assumed that the number of antennas at each BS and MS are M and N ,

respectively, and the number of MSs per cell is K. At a particular cell, say cell-q, the

downlink transmission to MS-i can be modeled as

yqi = Hqqi

K∑
j=1

xqj +

Q∑
r ̸=q

Hrqi

K∑
j=1

xrj + zqi , (6.1)

where xrj ∈ CM×1 is the transmitted vector from the BS-r intended for its connected

MS-j, Hrqi models the channel from BS-r to MS-i of cell-q, and zqi is the zero-mean

additive Gaussian noise vector with the covariance matrix Zqi . Since the multicell system

operates on the same frequency channel, the intended signal from BS-q to its MS-i is now
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subject to the intra-cell interference from the signals intended for other co-located MSs in

Hqqi

∑K
j ̸=i xqj , as well as the ICI from other cells in

∑Q
r ̸=q Hrqi

(∑K
j=1 xrj

)
.

Let D = min(M,N) be the number of data sub-streams for each MS. The transmit

signal vector xqi for MS-i can be expressed as

xqi = Vqisqi , (6.2)

where Vqi ∈ CM×D is the precoding matrix and sqi ∈ CD×1 represents the information

signal vectors. Without loss of generality, it is assumed that E[sqisHqi ] = I. Denote Qqi =

E
[
xqix

H
qi

]
= VqiV

H
qi

as the transmit covariance matrix intended for MS-i of cell-q. Let

Qq = {Qqi}
K
i=1 be the downlink precoder profile of the K users at cell-q. Likewise, let

Q−q = (Q1, . . . ,Qq−1,Qq+1, . . . ,QQ) denote the precoding profile of all cells except cell-q.

Denote z−qi =
∑Q

r ̸=q Hrqi

∑K
j=1 xrj + zqi as the total ICI plus additive Gaussian noise at

MS-i of cell-q, whose covariance Rqi is defined as

Rqi = E
[
z−qiz

H
−qi

]
=

Q∑
r ̸=q

Hrqi

(
K∑
j=1

Qrj

)
HH

rqi
+ Zqi . (6.3)

As the multicell system operates in IC mode, each BS only attempts to encode and

transmit information signals to the MSs within its cell. Unlike the BD precoding designs

in Chapter 4, this chapter considers the capacity-achieving multiuser encoding technique,

namely dirty-paper coding (DPC) [25–27], for the downlink transmissions from a BS to

its connected MSs. At cell-q, assuming the encoding order from user-K to user-1, DPC is

utilized such that the intended codeword for user-i does not see the intra-cell interference

from user-(i + 1) to user-K. As previously mentioned in Chapter 2, the achievable data

rate at user-i of cell-q with DPC is given by

RBC
qi

(Qq,Q−q) = log

∣∣∣Rqi +Hqqi

(∑i
j=1Qqj

)
HH

qqi

∣∣∣∣∣∣Rqi +Hqqi

(∑i−1
j=1Qqj

)
HH

qqi

∣∣∣ . (6.4)

Let RBC
q =

∑K
i=1R

BC
qi

be the sum-rate at cell-q for itsK connected MSs. Collectively, the

network WSR is given by
∑Q

q=1 ωq

∑K
i=1R

BC
qi
(Qq,Q−q), where ωq denotes the non-negative

weight of cell-q. Given Pq as the maximum transmit power at BS-q, the network WSR is
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maximized by the following optimization

maximize
Q1,...,QQ

Q∑
q=1

ωq

K∑
i=1

RBC
qi

(6.5)

subject to
K∑
i=1

Tr{Qqi} ≤ Pq, ∀q

Qqi ≽ 0, ∀i, ∀q.

Note that problem (6.5) is nonconvex because of the presence of Qqi ’s in the ICI terms

Rrj ’s with r ̸= q, as well as the intra-cell interference term in RBC
qj

with j < i. To this

end, we consider the two solution approaches, namely ILA and WMMSE, which have been

applied in Chapter 5 to the WSR maximization problem in the multicell MIMO-BC (6.5).

6.3 The ILA Solution Approach for the Multicell MIMO-BC

6.3.1 The ILA Algorithm for the Multicell MIMO-BC

This section investigates the ILA solution approach to obtain at least a locally optimal

solution to the nonconvex problem (6.5). Let fq(Qq,Q−q) =
∑Q

r ̸=q ωrRr(Qq,Q−q) denote

the WSR of all cells except cell-q. As fq(Qq,Q−q) is not concave in Qqi , we shall take an

approximation of fq into a linear term. At a given value of Q̄qi , taking the Taylor expansion

of fq around Q̄qi and retaining the first linear term, one has

fq(Qq, Q̄−q) ≈ fq(Q̄q, Q̄−q)−
K∑
i=1

Tr
{
Aq

(
Qqi−Q̄qi

)}
, (6.6)

whereAq is the negative partial derivative of fq with respect toQqi , evaluated atQqi = Q̄qi ,

given by
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Aq = −
∂fq
∂Qqi

∣∣∣∣
Qqi=Q̄qi

= −
Q∑

r ̸=q

ωr

K∑
j=1

∂Rrj

∂Qqi

∣∣∣∣∣
Qqi=Q̄qi

=

Q∑
r ̸=q

ωr

K∑
j=1

HH
qrj

(Rrj +

j−1∑
k=1

HrrjQrkH
H
rrj

)−1

−

(
Rrj +

j∑
k=1

HrrjQrkH
H
rrj

)−1
Hqrj

∣∣∣∣∣∣
Qqi=Q̄qi

.(6.7)

Note that this partial derivative has the same form with respect to each Qq1 , . . . ,QqK , and

is positive semi-definite, i.e., Aq ≽ 0. Then, one can approximate problem (6.5) into a set

of Q per-cell problems, where the optimization performed at cell-q is equivalent to

maximize
Qq1 ,...,QqK

ωq

K∑
i=1

RBC
qi
−

K∑
i=1

Tr{AqQqi} (6.8)

subject to
K∑
i=1

Tr{Qqi} ≤ Pq

Qqi ≽ 0, ∀i.

Some remarks regarding the optimization problem (6.8) are provided below:

Remark 6.1: Problem (6.8) is similar to the sum-rate maximization problem in the BC

with DPC, studied in [27, 28,30], albeit the presence of the penalty term
∑K

i=1Tr{AqQqi}
charged on ICI generated by BS-q. The penalty term encourages the BS to design its pre-

coders in a coordinated manner by controlling its induced ICI to other cells. Should the

penalty term be omitted, the BS would only maximize the downlink capacity for its con-

nected users. As a result, the precoding design in this multicell system is a noncooperative

game between the BSs, where each BS acts as a rational and selfish player. This multicell

precoding game is similar to the game studied in [12] for the case of 1 user per cell. It is to

be noted that the study of the multicell precoding game with DPC for the case of multiple

users per cell is beyond the scope of this work. Nonetheless, we shall present some nu-

merical results for this noncooperative design in comparison to the considered coordinated

design.

Remark 6.2: It is worth mentioning that [93,94] studied the BC sum-rate maximization
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with strict constraints on the induced ICI
∑K

i=1Tr{AqQqi}. The considered problem (6.8)

is different from the studies in [93,94], since we attempt to minimize the ICI penalty term

with a sum-power constraint on the transmit covariances.

Remark 6.3: Although problem (6.8) is not a convex optimization problem, its re-

semblance to the BC’s sum-rate maximization problem enables its transformation into a

dual MAC maximization problem via the so-called BC-MAC duality. In a conventional

multiuser MIMO system with the objective of maximizing the system sum-rate, BC-MAC

duality was proved for the case of a single sum-power constraint [27–29], a set of linear

power constraints [21,27], and multiple general transmit covariance constraints [93]. In the

following, it will be shown that the BC-MAC duality also holds for the multiuser MIMO

system with the objective of maximizing the system sum-rate while minimizing the penalty

term imposed on the transmit covariances. As a result, the nonconvex problem (6.8) can

be optimally solved via the convex MAC problem by utilizing this BC-MAC duality.

For simplicity in presentation, the subscript representing the BS is dropped without loss

of generality. We first consider the optimization (6.8) without the sum power constraint∑K
i=1Tr{Qi} ≤ P , which can be stated as

maximize
Q1,...,QK

ω
K∑
i=1

RBC
i −

K∑
i=1

Tr{AQi} (6.9)

subject to Qi ≽ 0, ∀i.

In the following, we are interested in obtaining the globally optimal solution Q⋆
1, . . . ,Q

⋆
K

to problem (6.9). Should Q⋆
1, . . . ,Q

⋆
K meet the sum power constraint in (6.8), i.e.,∑K

i=1Tr{Q⋆
i } ≤ P , they must be the global maximizer of problem (6.8) as well.

By changing the variables Q̃i = A1/2QiA
1/2 and denoting H̃i = R

−1/2
i HiA

−1/2, the

data-rate to user-i can be rewritten as

RBC
i = log

∣∣∣I+ H̃i

(∑i
j=1Q̃i

)
H̃H

i

∣∣∣∣∣∣I+ H̃i

(∑i−1
j=1Q̃i

)
H̃H

i

∣∣∣ . (6.10)
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Thus, problem (6.9) is equivalent to

maximize
Q̃1,...,Q̃K

ω
K∑
i=1

RBC
i −

K∑
i=1

Tr
{
Q̃i

}
(6.11)

subject to Q̃i ≽ 0, ∀i.

In order to solve the nonconvex problem (6.11), we utilize the known BC-MAC duality

property as follows. Consider a dual MAC with K N -antenna MSs transmitting to an

M -antenna BS, where the uplink channel from user-i to the BS is assumed to be H̃H
i

and background noise at the BS is AWGN with unit variance. It is assumed that the BS

employs SIC to decode the signals from the K MSs. With the decoding order from user-1

to user-K, SIC ensures that the received signal from user-i is not interfered by the signals

from user-1 to user-(i − 1). Denoting Xi as the uplink precoding covariance matrix at

user-i, the achievable data-rate for user-i in the MAC is thus given by

RMAC
i = log

∣∣∣I+∑K
j=i H̃

H
j XjH̃j

∣∣∣∣∣∣I+∑K
j>i H̃

H
j XjH̃j

∣∣∣ . (6.12)

The key relationship between the BC and its dual MAC is presented in the following

theorem.1

Theorem 6.1. [28] For a given set of downlink covariance matrices Q̃1, . . . , Q̃K in the

BC, it is always possible to find a set of uplink covariance matrices X1, . . . ,XK such that

RMAC
i = RBC

i and
∑K

i=1Tr{Xi} =
∑K

i=1Tr{Q̃i} through the BC-MAC transformation. Vice

versa, for a given set of uplink covariance matrices X1, . . . ,XK, it is always possible to find

a set of downlink covariances Q̃1, . . . , Q̃K such that RBC
i = RMAC

i and
∑K

i=1Tr{Q̃i} =∑K
i=1Tr{Xi} through the MAC-BC transformation.

From Theorem 6.1, instead of solving the nonconvex problem (6.8), one may consider

1The duality between the BC with a general linear constraint on
∑K

i=1 Tr{AQi} and the MAC was
established in [93] using a technique called SINR duality. In this work, we apply a simple change of
variables to show this duality.
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the following optimization problem

maximize
X1,...,XK

ω
K∑
i=1

RMAC
i −

K∑
i=1

Tr{Xi} (6.13)

subject to Xi ≽ 0, ∀i,

which can be interpreted as a MAC sum-rate maximization with a penalty term on the

transmit power at the MSs. Certainly, if the set X⋆
1, . . . ,X

⋆
K is optimal in (6.13), it is

possible to find the set Q̃⋆
1, . . . , Q̃

⋆
K that is optimal in (6.11) with the same maximum value.

By contradiction, if Q̃⋆
1, . . . , Q̃

⋆
K were not optimal, the BC-MAC transformation would

ensure that X⋆
1, . . . ,X

⋆
K would not be optimal. Thus, the BC-MAC duality also holds for

the considered problem with the objective of maximizing the sum-rate while minimizing the

penalty term imposed on the transmit covariances. Consequently, by finding the optimal

solution of problem (6.13), one also obtains the optimal solution of problem (6.11).

Note that the objective function in (6.13) can be simplified as

ω

K∑
i=1

RMAC
i −

K∑
i=1

Tr{Xi} = ω log

∣∣∣∣∣I+
K∑
i=1

H̃H
i XiH̃i

∣∣∣∣∣−
K∑
i=1

Tr{Xi}, (6.14)

which is concave in X1, . . . ,XK . Consequently, problem (6.13) is convex. In addition, the

inherently decoupled constraints for each variable matrix Xi allows the sequential maxi-

mization of the objective function over each variable matrix [83]. More specifically, MS-i

optimizes its covariance matrix Xi by performing

maximize
Xi≽0

ω log

∣∣∣∣∣∣I+
(
I+

K∑
j ̸=i

H̃H
j XjH̃j

)−1

H̃H
i XiH̃i

∣∣∣∣∣∣− Tr{Xi}, (6.15)

while treating the signal from other MSs as noise. Using the eigen-decomposion

H̃i

(
I+

∑K
j ̸=i H̃

H
j XjH̃j

)−1
H̃H

i = UiΣiU
H
i , the optimal solution can be obtained in closed-

form as Xi = Ui

[
ωI−Σ−1

i

]+
UH

i . Each MS-i can iteratively update its covariance matrix

while keeping other covariance matrices fixed [83]. Note that this procedure always improves

the objective function (6.14).

Since the objective function (6.14) is a subtraction of a log function of X1, . . . ,XK to

a linear function of X1, . . . ,XK , it must have an upper bound. As a result, the sequential
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optimization of (6.15) over X1, . . . ,XK is guaranteed to monotonically converge to the

optimal solution X⋆
1, . . . ,X

⋆
K of problem (6.13). Consequently, one can obtain the optimal

solution Q̃⋆
1, . . . , Q̃

⋆
K to problem (6.11) from X⋆

1, . . . ,X
⋆
K by the MAC-BC transformation

[28]. The optimal solution of (6.9) is then given by Q⋆
i = A−1/2Q̃⋆

iA
−1/2. As X⋆

1, . . . ,X
⋆
K is

the globally optimal solution to the MAC problem (6.13), Q⋆
1, . . . ,Q

⋆
K must be the globally

optimal solution to the BC problem (6.9). It is then straightforward to verify whether

Q⋆
1, . . . ,Q

⋆
K meet the sum-power constraint

∑K
i=1Tr{Q⋆

i } ≤ P . If the constraint is not

satisfied, one may consider the Lagrangian of original BC problem (6.8), which can be

stated as

L(Q1, . . . ,QK , λ) = ω

K∑
i=1

RBC
i −

K∑
i=1

Tr{(A+ λI)Qi}+ λP, (6.16)

where λ ≥ 0 is the Lagrangian multiplier associated with the power constraint∑K
i=1Tr{Qi} ≤ P . The Lagrangian dual function is then given by

g(λ) = sup
Q1≽0,...,QK≽0

L(Q1, . . . ,QK , λ) (6.17)

and the dual problem is defined as

minimize
λ

g(λ) (6.18)

subject to λ ≥ 0.

We first focus on the maximization of the Lagrangian dual function for a given λ, which

can be stated as

maximize
Q1,...,QK

ω
K∑
i=1

RBC
i −

K∑
i=1

Tr{(A+ λI)Qi} (6.19)

subject to Qi ≽ 0, ∀i.

Clearly, problem (6.19) is similar to problem (6.9). Thus, one can obtain the globally

optimal solution to problem (6.19) by adopting the approach in solving problem (6.9).

The difference is in the change of variables where Q̃i = (A + λI)1/2Qi(A + λI)1/2 and

H̃i = R
−1/2
i Hi(A+λI)−1/2. Then, by solving the dual MAC problem (6.13) and performing

the MAC-BC transformation one can obtain the globally optimal solution Q̃⋆
1, . . . , Q̃

⋆
K .

Subsequently, the optimal solution to the Lagrangian dual problem (6.19) is given by Q⋆
i =
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(A+ λI)−1/2Q̃⋆
i (A+ λI)−1/2.

It remains to minimize g(λ) subject to the constraint λ ≥ 0 in (6.18). By the La-

grangian duality theory, g(λ) is convex in λ [82]. However, g(λ) may not be differentiable.

Fortunately, it is possible to find the subgradient of g(λ). Suppose that at λ, Q⋆
1, . . . ,Q

⋆
K

is the optimal solution of (6.19). For any given λ′ > 0, one has

g(λ′) = max
{Qi}

ω
K∑
i=1

RBC
i

(
{Qi}

)
−

K∑
i=1

Tr{(A+ λ′I)Qi}+ λ′P

≥ ω

K∑
i=1

RBC
i

(
{Q⋆

i }
)
−

K∑
i=1

Tr{(A+ λ′I)Q⋆
i }+λ′P

= g(λ) +

(
P −

K∑
i=1

Tr{Q⋆
i }

)
(λ′ − λ). (6.20)

Thus, P −
∑K

i=1Tr{Q⋆
i } can be chosen as the subgradient of g(λ). The subgradient

search direction suggests to increase λ if
∑K

i=1Tr{Q⋆
i } ≥ P or decrease λ otherwise. Since

λ is searched in a one-dimensional space, the bisection method can be efficiently applied to

find the optimal λ⋆. We summarize the proposed algorithm to solve the nonconvex problem

(6.8) in Algorithm 6.1.

The optimality of the proposed algorithm is proved in the following theorem.

Theorem 6.2. The proposed Algorithm 6.1 achieves the globally optimal solution to prob-

lem (6.8).

Proof. Per the proposed Algorithm 6.1, if the obtained solution set Q⋆
1, . . . ,Q

⋆
K for the

case λ = 0 meets the power constraint
∑K

i=1 Tr{Q⋆
i } ≤ P , then Q⋆

1, . . . ,Q
⋆
K is the globally

optimal solution to problem (6.8). This is due to the equivalence between the BC problem

(6.11) and the MAC problem (6.13).

We now focus on the case λ⋆ > 0. Suppose that the obtained solution Q⋆
1, . . . ,Q

⋆
K from

the proposed algorithm is not globally optimal, and there is another solution set Q̂1, . . . , Q̂K

satisfying the conditions:

(i)
∑K

i=1Tr{Q̂i} ≤ P

(ii) ω
∑K

i=1R
BC
i (Q̂)−

∑K
i=1Tr{AQ̂i} > ω

∑K
i=1R

BC
i (Q⋆)−

∑K
i=1Tr{AQ⋆

i }.
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Algorithm 6.1: Iterative Algorithm for the MIMO-BC Sum-rate Maximization with
a Penalty Term

1 for a given λ ≥ 0 do

2 Change the variables as Q̃i = (A+ λI)1/2Qi(A+ λI)1/2 and

H̃i = R
−1/2
i Hi(A+ λI)−1/2;

3 Solve the equivalent uplink MAC problem

maximize
X1,...,XK

ω log
∣∣∣I+∑K

i=1 H̃
H
i XiH̃i

∣∣∣−∑K
i=1Tr{Xi} by;

4 repeat
5 for i = 1, 2, . . . ,K do

6 Perform the eigen-decomposition H̃i

(
I+

∑K
j ̸=i H̃

H
j XjH̃j

)−1
H̃H

i = UiΣiU
H
i ;

7 Update Xi = Ui

[
ωI−Σ−1

i

]+
Ui;

8 end

9 until convergence to X⋆
1, . . . ,X

⋆
K ;

10 Compute Q⋆
1, . . . ,Q

⋆
K from X⋆

1, . . . ,X
⋆
K by the MAC-BC transformation;

11 Compute Q⋆
i = (A+ λI)−1/2Q̃⋆

i (A+ λI)−1/2, i = 1, . . . ,K;

12 end
13 case λ = 0
14 Follow step 1 to 12 to obtain Q⋆

i ;

15 if
∑K

i=1Tr{Q⋆
i } ≤ P then stop the algorithm;

16 case λ > 0
17 Set λmin = 0 and λmax large;
18 repeat
19 λ = (λmin + λmax)/2;
20 Follow step 1 to 12 to obtain Q⋆

i ;

21 if
∑K

i=1Tr{Q⋆
i } > P then set λmin = λ; otherwise, set λmax = λ

22 until
∑K

i=1Tr{Q⋆
i } = P or (λmax − λmin) is small enough;

Since Q⋆
1, . . . ,Q

⋆
K globally maximizes the Lagrangian as given in problem (6.19), one

has

ω

K∑
i=1

RBC
i (Q⋆)−

K∑
i=1

Tr{AQ⋆
i + λ⋆Q⋆

i } ≥ ω
K∑
i=1

RBC
i (Q̂)−

K∑
i=1

Tr{AQ̂i + λ⋆Q̂i}.(6.21)

Thus, condition (ii) then guarantees

λ⋆

K∑
i=1

Tr{Q⋆
i } < λ⋆

K∑
i=1

Tr{Q̂i}. (6.22)
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Since Algorithm 6.1 guarantees
∑K

i=1Tr{Q⋆
i } = P for the case λ⋆ > 0, one has

P =
K∑
i=1

Tr{Q⋆
i } <

K∑
i=1

Tr{Q̂i}, (6.23)

which contradicts the condition (i). Thus the proof for this theorem follows by contradic-

tion.

As proved in Theorem 6.1, the optimization (6.8) carried at cell-q can be effectively and

optimally solved. For the network WSR maximization problem (6.5), the proposed ILA

algorithm requires each cell-q, q = 1, . . . , Q to iteratively update the matrix Aq and solve

its approximated optimization problem (6.8).

Theorem 6.3. The optimization (6.8) performed at any given BS-q always improves the

network WSR
∑Q

q=1 ωqR
BC
q . Thus, the Gauss-Seidel iterative update is guaranteed to cov-

erge to at least a local maximum.

Proof. Suppose that Qq = Q̄q =
{
Q̄qi

}K
i=1

, ∀q was obtained from the previous iteration,

and Q⋆
q =

{
Q⋆

qi

}K
i=1

, ∀q is the optimal solution after the current iteration. Note that

fq(Qq,Q−q) is a convex function with respect toQq ∈ Sq , {{Qqi}|Qqi ≽ 0,
∑K

i=1Tr{Qqi} ≤
Pq} [57, 81]. Thus, the first-order condition of the convex function fq [82] dictates that

fq(Q
⋆
q, Q̄−q)≥fq(Q̄q, Q̄−q)−

K∑
i=1

Tr
{
Aq(Q

⋆
qi
−Q̄qi)

}
(6.24)

with Aq being defined in (6.7) at Q̄qi . After one Gauss-Seidel iteration, the network WSR

is updated as

Q∑
q=1

ωqR
BC
q (Q⋆

q, Q̄−q) = ωqR
BC
q (Q⋆

q, Q̄−q) + fq(Q
⋆
q, Q̄−q)

≥ ωqR
BC
q (Q⋆

q, Q̄−q) + fq(Q̄q, Q̄−q)−
K∑
i=1

Tr
{
Aq(Q

⋆
qi
− Q̄qi)

}
≥ ωqR

BC
q (Q̄q, Q̄−q) + fq(Q̄q, Q̄−q)−

K∑
i=1

Tr
{
Aq(Q̄qi − Q̄qi)

}
=

Q∑
q=1

ωqR
BC
q (Q̄q, Q̄−q),
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where the first inequality is due to the one in (6.24), and the second inequality is due

to Q⋆
q being the optimal solution of problem (6.8). Hence, the network WSR is strictly

nondecreasing after an update of the covariance matrices at any given BS. With the Gauss-

Seidel (sequential) iterative update, each BS takes turns to refine its precoders and improve

the network WSR. Since the network WSR is upper-bounded, the Gauss-Seidel iterative

update is guaranteed to converge to at least a local maximum.

Algorithm 6.2: ILA Algorithm for the Multicell MIMO-BC with DPC

1 Initialize {Qqi}∀q,∀i, such that
∑K

i=1Tr{Qqi} = Pq.;
2 repeat
3 Q̄qi ← Qqi ;
4 for q = 1, 2, . . . , Q do
5 At the BS, update the matrix Aq as given in (6.7);
6 Update Qqi , i = 1, . . . ,K by executing Algorithm 6.1;

7 end

8 until convergence;

The ILA algorithm for the multicell MIMO-BC is summarized in Algorithm 6.2. In

Algorithm 6.2, we refer to the iterative procedure 2-8 as an outer-loop iteration and refer

to the update at a particular BS using the iterative Algorithm 6.1 in step 6 as an inner-loop

iteration. It is worth mentioning that certain optimization steps in Algorithm 6.2 can be

assigned and executed in a distributed manner across the coordinated BSs. We address the

distributed implementation of the ILA algorithm in Section 6.3.2.

6.3.2 Distributed Implementation of the Proposed ILA Algorithm

In order to implement the proposed ILA algorithm distributively, the following assumptions

are taken in consideration:

• Assumption 1: Each BS, say BS-q, knows the channel matrices Hqri ’s to all the MSs

in the network. This assumption allows the BS to control its induced ICI to other

cells.

• Assumption 2: The coordinated BSs have reliable backhaul links to exchange control

information among themselves.



6.3 The ILA Solution Approach for the Multicell MIMO-BC 127

• Assumption 3: The channels are in block-fading or vary sufficiently slow such that

they can be considered fixed during the optimization process.

It is to be noted that the optimization (6.8) can be performed distributively at the

corresponding BS with local information. Thus, it remains to show that the factors Aq’s

can also be computed in a distributed manner through a message exchange mechanism

among the BSs. It is observed from equation (6.7) that in order to compute Aq, BS-q has

to possess the channels Hqrj ’s to all the MSs in the other cells, as stated in Assumption 1.

In addition, BS-q needs to acquire the pricing matrix

Brj = ωr

[
C−1

rj
−
(
Crj +HrrjQrjH

H
rrj

)−1
]

(6.25)

from other cells, where Crj = Rrj +
∑j−1

k=1HrrjQrkH
H
rrj

. Thus, it is required that MS-j at

cell-r computes its corresponding factor Brj using only local measurements. In fact, Crj is

the total interference plus noise and Crj +HrrjQrjH
H
rrj

is the total signal and interference

plus noise, pertaining to MS-i of cell-q. After computing the pricing matrix Brj , the MS

can feed back this parameter to its connected BS. These factors Brj ’s are then exchanged

among the BSs to compute Aq’s.

Remark 6.4: It is proved in Theorem 6.3 that the optimization carried at a given BS

always improves the network WSR, which leads to the convergence of the ILA algorithm

with the Gauss-Seidel update. However, before each update, all the MSs are required to

compute their pricing matrices Brj ’s and exchange them within the whole network. As a

result, the Gauss-Seidel update may demand a lot of computation at the MSs and message

exchanges in the network. To reduce the amount of computation and message exchanges,

the proposed ILA algorithm can be also implemented by the Jacobi (simultaneous) iterative

update. Specifically, after each instance of pricing update and message exchange, all the

BSs simultaneously update their covariance matrices. Although the convergence of the ILA

algorithm with the Jacobi update is not analytically proved, we observe in simulations that

the Jacobi update converges much faster than the Gauss-Seidel update in terms of number

of iterations.
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6.4 The WMMSE Solution Approach for the Multicell

MIMO-BC

6.4.1 The DPC-WMMSE Algorithm for the Multicell MIMO-BC

In Section 6.3, we examined a linear convex approximation technique to solve the nonconvex

optimization problem (6.5) by successively improving the downlink covariance matrices at

the BSs. In this section, we examine the second approach to solve this nonconvex problem

by transforming it into a matrix-weighted sum-MSE minimization problem. Following

the approach proposed in [33, 58], we develop a version of the WMMSE algorithm for

the multicell MIMO-BC with DPC precoding. The newly developed algorithm shall be

referred to as the DPC-WMMSE algorithm, in order to avoid the confusion with the original

WMMSE algorithm for the case of linear precoding in [58]. Unlike the ILA algorithm, which

tries to optimize over the transmit covariancesQqi ’s, the optimization in the DPC-WMMSE

algorithm is carried over the transmit beamforming matrix Vqi .

With Vqi ’s being the variables, the optimization problem (6.5) can be restated as

maximize
{Vqi}∀i,∀q

Q∑
q=1

ωq

K∑
i=1

RBC
qi

(6.26)

subject to
K∑
i=1

Tr{VqiV
H
qi
} ≤ Pqi , ∀q,

where the achievable rate Rqi , given in (6.4), can be restated as

RBC
qi

= log

∣∣∣∣∣Zqi +
Q∑

r ̸=q

K∑
j=1

HrqiVrjV
H
rj
HH

rqi
+

i∑
j=1

HqqiVqjV
H
qj
HH

qqi

∣∣∣∣∣∣∣∣∣∣Zqi +
Q∑

r ̸=q

K∑
j=1

HrqiVrjV
H
rj
HH

rqi
+

i−1∑
j=1

HqqiVqjV
H
qj
HH

qqi

∣∣∣∣∣
. (6.27)

Since DPC with the encoding order from MS-K to MS-1 is applied at each BS, MS-i

receives the signal from BS-q as if there was no intra-cell interference from user-(i + 1) to

user-K. Thus, while treating the ICI as noise, the estimated signal for user-i in BS-q is
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given by

ŝqi = UH
qi

(
i∑

j=1

HqqiVqjsqj +

Q∑
r ̸=q

K∑
j=1

HrqiVrjsrj + zqi

)
, (6.28)

where UH
qi

is the receive beamformer at MS-i. Given the transmit beamforming matrices

Vqi ’s, the receive beamformer matrix Uqi is designed to minimize the MSE for the data

streams intended for MS-i of cell-q. Let Eqi be the expected MSE matrix of MS-i, which

is defined as

Eqi = E
[
(ŝqi − sqi)(ŝqi − sqi)

H
]

=
(
I−UH

qi
HqqiVqi

) (
I−UH

qi
HqqiVqi

)H
+

i−1∑
j=1

UH
qi
HqqiVqjV

H
qj
HH

qqi
Uqi

+

Q∑
r ̸=q

K∑
j=1

UH
qi
HrqiVrjV

H
rj
HH

rqi
Uqi +UH

qi
ZqiUqi . (6.29)

To minimize the sum MSE, the optimal receive beamformer Uqi can be derived straight-

forwardly as the Wiener filter, i.e., MMSE receiver

Uqi = argmin
Uqi

Tr {Eqi}

=

(
i∑

j=1

HqqiVqjV
H
qj
HH

qqi
+

Q∑
r ̸=q

K∑
j=1

HrqiVrjV
H
rj
HH

rqi
+ Zqi

)−1

HqqiVqi . (6.30)

The resultant MMSE matrix for user-i in cell-q is then given by

EMMSE
qi

= I−UH
qi
HqqiVqi (6.31)

=

I+VH
qi
HH

qqi

(
i−1∑
j=1

HqqiVqjV
H
qj
HH

qqi
+

Q∑
r ̸=q

K∑
j=1

HrqiVrjV
H
rj
HH

rqi
+Zqi

)−1

HqqiVqi

−1

.

Similar to the case of linear precoding, the relationship between the data rate and the

MMSE matrix with DPC can be expressed as

Rqi = log
∣∣∣(EMMSE

qi

)−1
∣∣∣ . (6.32)
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Due to this relationship, the equivalence between the WSR maximization problem in the

multicell MIMO-BC and the matrix-weighted sum-MSE minimization can be established

in the following theorem.

Theorem 6.4. The multicell MIMO-BC WSR maximization problem (6.26) is equivalent

to the following matrix weighted sum-MSE minimization

minimize
Wqi ,Vqi ,Uqi

Q∑
q=1

ωq

K∑
i=1

[
Tr {WqiEqi} − log |Wqi|

]
(6.33)

subject to
K∑
i=1

Tr
{
VqiV

H
qi

}
≤ Pq,∀q,

where Wqi ≽ 0 is the weight matrix for MS-i at cell-q. In particular, the globally optimal

solutions {V}∀q,∀i are identical for the two problems.

Proof. The proof for this theorem is similar to that in [33,58] for the case of linear precoding.

Thus, we omit the details for brevity.

Since solving problem (6.26) is equivalent to solving problem (6.33), we now proceed to

numerically obtain the solution to the latter problem. Although the objective function in

(6.33) is not jointly convex over the whole set of variables, it is convex in each set of the

variables Uqi ,Vqi ,Wqi . Thus, it is possible to find a locally optimal solution to problem

(6.33) by alternately optimizing one set of the variables while fixing the other two until

convergence. First, with fixed transmit beamformers Vqi ’s, the receive beamformers Uqi ’s

are given as in (6.30). Second, fixing the transmit and receive beamformers Vqi ’s and Uqi ’s,

the weighted-matrices Wqi ’s are updated in a closed form solution

Wqi = E−1
qi

= I−UH
qi
HqqiVqi . (6.34)

Finally, by decomposing the objective function in (6.33), the transmit beamformers Vqi ’s

are updated by solving decoupled optimization problems across the BSs
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minimize
Vq1 ,...,VqK

K∑
i=1

[
ωqTr

{
Wqi

(
I−UH

qi
HqqiVqi

) (
I−UH

qi
HqqiVqi

)H}
+ωq

K∑
j>i

Tr
{
WqjU

H
qj
HqqjVqiV

H
qi
HH

qqj
Uqj

}

+

Q∑
r ̸=q

K∑
j=1

ωrTr
{
WrjU

H
rj
HqrjVqiV

H
qi
HH

qrj
Urj

}]
(6.35)

subject to
K∑
i=1

Tr
{
VqiV

H
qi

}
≤ Pq.

This optimization then can be carried simultaneously and separately at BS-q. Since

problem (6.35) is a convex quadratic program, its optimal solution can be derived as

Vqi = ωq

(
K∑
j=i

ωqH
H
qqj

UqjWqjU
H
qj
Hqqj+

Q∑
r ̸=q

K∑
j=1

ωrH
H
qrj

UrjWrjU
H
rj
Hqrj+µ⋆

qI

)−1

HH
qqi
UqiWqi ,

(6.36)

where µ⋆
q is the optimal Lagrangian multiplier associated with the power constraint. In case

of µ⋆
q = 0,

∑K
i=1 Tr

{
VqiV

H
qi

}
< Pq, then the BS-q does not utilize its full power. Otherwise,

µ⋆
q can be easily obtained by the bisection method until the power constraint is met with

equality.

We summarize the DPC-WMMSE algorithm for the multicell MIMO-BC as in Algo-

rithm 6.3. In this algorithm, in each outer-loop iteration, each set of variables (i.e., the

receive beamforming matrices Uqi ’s, the weight matrices Wqi ’s, and the transmit beam-

forming matrices Vqi ’s) can be updated simultaneously across the Q cells. Compared to

the ILA algorithm, the DPC-WMMSE algorithm does not require any inner-loop iteration

or the BC-MAC transformations because of the direct update of the variables Uqi , Wqi ,

and Vqi . Compared to the original WMMSE algorithm with linear precoding in [33, 58],

the DPC-WMMSE algorithm requires some modifications to the transmit beamforming

matrices Vqi ’s and the receive beamforming matrices Uqi to accommodate the DPC.

In the DPC-WMMSE algorithm, the iterative process is executed by alternatively op-

timizing over each set of variables in Uqi ’s, Wqi ’s, and Vqi ’s. Since the constraint set

of problem (6.33) is decoupled for each set of variables, the alternative optimization over

Uqi ’s, Wqi ’s, and Vqi ’s must decrease the objective function monotonically [89]. Moreover,
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Algorithm 6.3: DPC-WMMSE Algorithm for the Multicell MIMO-BC with DPC

1 Initialize {Vqi}∀q,∀i, such that
∑K

j=1Tr{VqiV
H
qi } = Pq;

2 repeat
3 Set V̄qi ← Vqi , ∀q, ∀i.;
4 Simultaneously update across Q cells;
5 for q = 1, . . . , Q do
6 At the K MSs, update the receive beamformers and weight matrices;
7 for i = 1, . . . ,K do

8 Uqi ←

(
i∑

j=1
HqqiVqjV

H
qjH

H
qqi +

Q∑
r ̸=q

K∑
j=1

HrqiVrjV
H
rjH

H
rqi + Zqi

)−1

HqqiVqi ;

9 Wqi ←
(
I−UH

qiHqiVqi

)−1
;

10 end
11 At the BS, update the transmit matrices;
12 Vqi←

ωq

(
K∑
j=i

ωqH
H
qqjUqjWqjU

H
qjHqqj+

Q∑
r ̸=q

K∑
j=1

ωrH
H
qrjUrjWrjU

H
rjHqrj+µ⋆

qI

)−1

HH
qqiUqiWqi ,∀i;

13 end

14 until convergence;

the cost function in (6.33) is lower-bounded due to the power constraints on Vqi ’s. Thus,

the DPC-WMMSE must converge to at least a local minimum (U⋆
qi
,W⋆

qi
,V⋆

qi
) of the cost

function (6.33). Note that the cost function of the original sum-rate maximization problem

(6.26) does not necessarily improve after each iteration. However, given (U⋆
qi
,W⋆

qi
,V⋆

qi
) as

a local minimizer of problem (6.33) obtained from the DPC-WMMSE algorithm, V⋆
qi

is

also a local optimizer of the original problem (6.26). This observation was proved for the

WMMSE algorithm in case of linear precoding [58]. The same proof can be applied here

for the DPC-WMMSE algorithm with the DPC consideration.

6.4.2 Distributed Implementation of the DPC-WMMSE Algorithm

As shown in [58], the WMMSE algorithm can be implemented in a distributed manner.

Under the same assumptions given in Section 6.3.2, distributed implementation to the DPC-

WMMSE algorithm is also possible. At the receiving end, say MS-i in cell-q, the MS needs

to locally measure its total signal plus interference and update its receive beamforming

matrix Uqi and weight matrix Wqi as in (6.30) and (6.34) with local information. It then
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feeds back the updated Uqi and Wqi to its connected BS-q. BS-q then computes the matrix

ωq

∑K
i=1UqiWqiU

H
qi
and exchanges it to the other coordinated BSs in the network. At the

transmitting end, BS-q, knowing the encoding order for its connected MSs, can update its

transmit beamforming matrices Vqi ’s within its power limit as stated in (6.35) and feeds

back the updated Vqi to its MS-i.

6.5 Simulation Results

This section presents some numerical evaluations on the achievable downlink sum-rate of a

multicell system with different levels of coordination and on the convergence behavior of the

proposed algorithms. We compare the sum-rate between 3 schemes: (i) the coordination

mode with DPC obtained from the ILA and DPC-WMMSE algorithms (with equal weights

ω1 = . . . = ωQ), (ii) the competition mode where each BS selfishly maximizes the sum-rate

for its connected MSs using DPC, and (iii) the coordination mode with linear precoding

obtained from the WMMSE algorithm in [58]. Unless stated otherwise, the ILA scheme is

implemented with the Gauss-Seidel update due to its guaranteed convergence. We consider

a generic 3-cell system with 3 MSs per cell, as illustrated in Fig. 6.1. The numbers of

antennas at each BS and each MS are assumed to be 4 and 2, respectively. The BSs are

located at a normalized distance of 2 and the MSs are randomly located on a circle at

distance d from its connected BS. The channel coefficients are generated by the path loss

model with a path loss exponent of 3. The additive Gaussian noise at each MS is assumed

to be white with the covariance matrix Zqi = σ2I and σ2 is set at 0.01. The transmit power

Pq at each BS is constrained at 1 W, i.e., Pq/σ
2 = 20 dB, unless stated otherwise.

Fig. 6.2 illustrates the total network sum-rate versus the intracell MS-BS distance d

obtained from the 3 schemes. As d is varied, 10, 000 channel realizations at each value

of d are used used to obtain the average network sum-rate. Note that the effect of ICI

is more apparent with increasing d due to the decreasing gain of intra-cell channels and

the increasing gain of inter-cell channels. Thus, the network sum-rate is reduced with

increasing d, as observed in the figure for all the schemes. Out of the 3 schemes, scheme

(i) always show a superior sum-rate performance, since it takes advantages of both the

nonlinear precoding in DPC and the interference coordination. At the low ICI region,

i.e, small d, scheme (i) significantly outperforms scheme (iii) due to the use of DPC over

linear precoding. On the other hand, at the high ICI region, by implementing the IC
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Fig. 6.1 A multicell system with 3 cells and 3 MSs per cell. Each MS is
randomly located at a distance d from its connected BS.

with the proposed algorithm, one can significantly improve the network sum-rate over the

competitive design. In scheme (i), it can be observed that the sum-rates obtained by the

ILA and DPC-WMMSE algorithms closely match over whole range of d. However, at low

d, the ILA algorithm outperforms the DPC-WMMSE algorithm. This behavior is probably

due to the reason that each BS focuses more on maximizing its own sum-rate than limiting

the ICI at the low-ICI region. In this case, Algorithm 6.1 utilized in the ILA algorithm can

obtain the optimal solution to the per-cell sum-rate maximization problems, whereas the

DPC-WMMSE obtains the sum-rate from the transformed WMMSE problem.

Fig. 6.3 illustrates the network sum-rate versus the transmit power to AWGN ratio

P/σ2 (with same power P at each BS) for d = 0.7. It is observed from the figure that

increasing the transmit power at each BS shall increase the network sum-rate for all 3

schemes. However, at the high P/σ2 region the sum-rate obtained from scheme (ii) becomes

saturated. This is due to the reason that the competitive design does not attempt to control

ICI, and thus increases the ICI relatively with the transmit power. In this case, it is more

appealing to implement the IC designs in schemes (i) and (iii). Similar to the observation

in Fig. 6.2, the non-linear precoding design in scheme (i) can extract extra performance
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Fig. 6.2 Network sum-rates versus the intra-cell BS-MS distance d.

from the multicell network over the linear precoding design in scheme (iii). Interestingly,

the ILA algorithm also provides a better sum-rate than the DPC-WMMSE algorithm at

the high P/σ2 region.

It is to be noted that the ILA, DPC-WMMSE, WMMSE algorithms, and the competi-

tive design may require many iterations to fully converge. Herein, we define an iteration as

an instance of message exchange among the BSs. As previously mentioned, to implement

the interference coordination among the cells, each algorithm (ILA with Gauss-Seidel up-

date, DPC-WMMSE, and WMMSE) requires the coordinated BSs to exchange signaling

messages after each outer-loop iteration. For practical implementation, it may be desirable

to set the number of iterations to reduce the amount of message exchanges. In Fig. 6.4, we

compare the obtained sum-rates from each algorithm after 10 iterations versus the intra-cell

BS-MS distance d. Fig. 6.4 shows that the ILA algorithm converges at a faster rate than

the WMMSE algorithm in terms of the number of outer-loop iterations. Of the two types

of updating in the ILA algorithm, the convergence of the Jacobi update is clearly faster

than that of the Gauss-Seidel update.
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Fig. 6.3 Network sum-rates versus the transmit power to AWGN ratio for
d = 0.7.

For a specific channel realization with d = 0.7, we illustrate the convergence behavior

of the proposed ILA and DPC-WMMSE algorithms in Fig. 6.5. After each iteration, the

network sum-rates obtained from the algorithms are plotted. In general, the ILA algorithm

converges faster than the DPC-WMMSE algorithm, as Fig. 6.4 also indicates. As observed

from Fig. 6.5, once a BS updates its covariance matrices, the overall network sum-rates

are always improved by the ILA algorithm with the Gauss-Seidel update and the DPC-

WMMSE algorithm. This behavior agrees with our analysis on the convergence of the

algorithms. Interestingly, the ILA algorithm also experiences the monotonic convergence

with the Jacobi update. Both the ILA and DPC-WMMSE algorithms eventually converge

to a network sum-rate that is superior than the one obtained by the competitive design.

With the same sample channel realization as in Fig. 6.5, Fig. 6.6 displays the conver-

gence of Algorithm 6.1 in maximizing the BC sum-rate with a penalty term, i.e., problem

(6.8). After each update of the dual variable λ, the evolutions of the sum-rate and the

transmit power at BS-1 are plotted in the figure. As can be observed from the figure, the

algorithm converges very fast in a few iterations. Due to the penalty term, BS-1 needs to
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Fig. 6.4 Network sum-rates versus intra-cell BS-MS distance d, obtained
from ILA, DPC-WMMSE, and WMMSE algorithms with 10 outer-loop itera-
tions.

balance its achievable sum-rate with the ICI induced to cell-2 and -3. Thus, its sum-rate

is undoubtedly reduced, compared to the one obtained in a conventional BC without the

penalty term. Nonetheless, under the IC mode, each BS adopts a less selfish strategy to

improve the overall network sum-rate, as shown in Fig. 6.5.

6.6 Concluding Remarks

This chapter examined the problem of network WSR maximization in the multicell MIMO-

BC with DPC. Under the coordination mode, the network sum-rate maximization problem

was shown to be nonconvex. This work then considered two low-complexity solution ap-

proaches, namely ILA and DPC-WMMSE to search for locally optimal solutions. In the

first approach, successive convex approximation technique was utilized to transform the

problem into multiple per-cell problems, which are then optimized distributively at each

BS. In particular, each BS attempted to maximize the BC sum-rate to its connected BS
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Fig. 6.5 Convergence of the proposed ILA and DPC-WMMSE algorithm to
maximize the network sum-rate with interference coordination.

with a penalty term on its induced ICI to other cells. A distributed and fast converging

algorithm was then proposed to efficiently find a locally optimal solution to the network

WSR maximization problem. In the second approach, by establishing the equivalence be-

tween the maximization of the WSR and the minimization of the weighted MSE, the WSR

problem was locally optimized by alternatively optimizing over the weight matrices and

MMSE decoders at the MSs and the MMSE precoders at the BSs. As the proposed algo-

rithms allow the multicell to take advantage of both DPC and coordinating the ICI, they

show a significant improvement in the network sum-rate compared to competitive design

and the linear precoding.
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Fig. 6.6 The convergence of Algorithm 6.1 to solve Problem (6.8).
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Chapter 7

Conclusion and Future Works

7.1 Summary

Inter-cell interference management has been a critical issue for current and future wireless

cellular systems with universal frequency reuse. Regarded as a key technology of the LTE-

A standard, CoMP champions the concept of interference-aware multicell coordination to

actively deal with the ICI. By coordinating the transmissions from multiple cells, significant

power reduction and rate enhancement can be realized. However, the standardization

and successful implementation of CoMP to its full potential may face several technical

challenges. Due to the large-scale and distributed nature of the multicell system, it is quite

difficult to gather the CSI from the whole coordinated system to fully control the ICI. In

addition, CoMP may induce a significant amount of signaling message exchanges, which

become undesirable due to the limitations of the backhaul links.

This dissertation has been concerned with the precoding perspectives in multiuser

CoMP systems under two operating modes: interference aware and interference coordi-

nation. Specifically, we have examined various precoding techniques and proposed low-

complexity algorithms in devising optimal CoMP precoders. We have also presented the

message exchange mechanism among the coordinated BSs and MSs to facilitate the dis-

tributed implementation of the proposed algorithms.

Chapter 3 has considered the game theoretical approach in multicell precoding designs

with the objective of minimizing the transmit power at the BSs. Via the game theory

framework, we have examined the conditions on the existence and uniqueness of a stable

NE for the multicell system in the IA mode. To improve the efficiency of the NE, we
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have considered a more cooperative game through a pricing mechanism. A condition on

the pricing factors has been presented to allow the new NE point approaching Pareto-

optimal solutions obtained by the IC mode. Chapter 4 has studied multiuser precoding

designs in a multicell system with the objective of maximizing the data-rate in the downlink

transmission. We have examined the multicell system where BD is applied on a per-cell

basis. In the IA mode, we have considered and characterized the SNG among the BSs. In

the IC mode, we have developed a low-complexity algorithm to distributively design the

BD precoders across the coordinated BSs. Extension to BD-DPC precoding has also been

given in Chapter 4.

In Chapter 5, we have studied the joint WSR maximization in the multicell MIMO-

MAC under the IC mode. Since this WSR maximization problem is nonconvex, obtaining

its globally optimal solution is rather computationally complex. We have then proposed

two iterative solution approaches: one is based on successive convex approximation (ILA

algorithm) and the other is based on the transformation to the weighted MSE minimiza-

tion problem (WMMSE algorithm). Both solution approaches have revealed the structure

of the optimal uplink precoders and the message signaling mechanism to facilitate their

distributed implementation among the coordinated cells. Chapter 6 has examined the pre-

coding designs to maximize the WSR in a multicell MIMO-BC under the IC mode. The

two approaches, namely ILA and WMMSE, have been exploited to search for local optimal

solutions to this nonconvex problem. Distributed implementation to the two approaches

has also been presented in the chapter. Interestingly, we have shown a connection between

the MIMO-BC and MIMO-MAC problems to expedite the search for the former problem’s

solution. Generally, simulation results have shown a significant performance improvement

in terms of transmit power and achievable sum-rate by the IC mode over the IA mode.

7.2 Potential Future Works

The research presented in this Ph.D. dissertation has examined only a small tip of iceberg

on the precoding design perspective of CoMP. There are avenues for further research to

refine and improve the precoders in practical implementation of CoMP.

1. Precoding designs with limited feedback in the CoMP setting: The current precoding

designs for CoMP come with the requirements for perfect CSI knowledge across the
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coordinated cells. In practice, it is generally challenging to acquire and exchange the

CSI signaling accurately, especially in the presence of quantization effects, fast varying

environment, and CSI feedback delays. Precoding designs with limited feedback

in MIMO single-cell systems have attracted a lot of research interests due to their

minor performance deficiency, compared to the designs with perfect CSI feedback [95].

Certainly, it will be interesting to investigate the performance of precoding designs

with limited feedbacks in a CoMP system.

2. Regularized ZF/BD precoding designs under the CoMP: In Chapter 3, we have in-

vestigated the design of BD precoders in a CoMP system. While ZF/BD precoders

are near optimal at high SNR, their performances are poor at the low SNR region.

Regularized ZF/BD precoding has been shown as an effective and simple technique

to tackle the limitation of plain ZF/BD precoding in a single-cell system [96–100].

Extension of the regularized ZF/BD precoding to the multicell setting is also an

interesting research direction.

3. Nonlinear precoding with vector perturbation: While DPC is the optimal multiuser

precoding technique, DPC is highly complex to implement. Practical nonlinear pre-

coding techniques such as vector perturbation (VP) can significant improve the system

performance over the linear precoding [101–104]. There is quite a limited number of

works on VP precoding in a multicell system [105]. It will be interesting to further

investigate the performance of VP precoding in conjunction with Regularized ZF/BD

precoding in a CoMP system.
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Appendix A

Dirty-Paper Coding

A.1 The Theory of Dirty-Paper Coding

The name “Dirty-paper coding” (DPC) comes from the title of the paper by Max Costa [25],

who determined the capacity of a Gaussian channel having interference that is known to

the transmitter. The system model of a Gaussian channel with an interference source is

given by

y = x+ i+ z, (A.1)

where x is the transmitted signal, i ∼ CN (0, σ2
i ) is the Gaussian interference source, and

z ∼ CN (0, σ2) is the Gaussian noise. The transmitted signal x is used for sending a

codeword u with a power constraint |x|2 ≤ P . When the interference i is known at the

receiver, it can be fully suppressed at the receiver such that the capacity of the system is

C = log

(
1 +

P

σ2

)
. (A.2)

Now, what happens if the interference i is known at the transmitter only, but not at

the receiver? In this case, the transmitter can simply pre-cancel the interference. However,

part of the power P will be used for interference cancelation, which makes the capacity of

the system less than C. Interestingly, it was shown in Costa’s paper [25] that the capacity

C is still achievable for the system (A.1) by the so-called “dirty-paper coding” technique.

More specifically, depending on a non-causal random state of s, the transmitter shifts its

designed alphabet set for the codeword u in the direction of s, instead of canceling s. This
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DPC technique is analogous to writing adaptively over the dirt pattern on the dirty paper

sheet instead of avoiding the dirt.

A.2 Dirty-Paper Coding in a Multiuser Downlink System

DPC has found is its great application in multiuser downlink transmissions by reducing the

effect caused by inter-user interference. In fact, it was proved that DPC is the capacity-

achieving multiuser coding technique for MISO systems [26] and for MIMO systems [27].

In a nutshell, for the multiuser DPC encoding scheme, the codewords for the multiple users

are encoded in sequence, such that the codeword indeed for a particular user, say user-i, is

designed by taking advantage of the non-causal knowledge of the interference caused by the

codewords of the users encoded before user-i. With DPC, the achievable capacity for the

transmission to user-i is the same as if there is no interference induced by the codewords

of these users. A detailed expression on the achievable rate for each user in a multiuser

MIMO downlink system is given in Section 2.1.3.
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Appendix B

A Brief Overview of Game Theory

Game theory is a branch of mathematics studying the conflict and cooperation between

rational decision-makers [106–108]. The aim of game theory is to model and understand

the interaction between competing entities. Game theory has been mainly applied in eco-

nomics, political science, and psychology. Recently, the application of game theory has been

successfully adopted to the study of various engineering fields, including signal processing,

information and communication theories [109]. As communication networks become more

intelligent, decentralized, and self-organized, many communication problems can be natu-

rally formulated as a game between the rational network entities. This dissertation, aims to

the study various precoding designs in multicell wireless networks, relies on game theory in

modeling and studying the interaction between the multiple cells. The aim of this appendix

is to present a brief overview of game theory and review the theory behind the multicell

games studied in this dissertation.

Let Ω = {1, . . . , Q} denote a finite set of Q players and Sq denote the set of admissible

strategies of player-q. Let sq ∈ Sq be a strategy of player-q and s−q be a strategy profile of

the other players, except player-q. Collectively, let s = (sq, s−q) ∈ S ,
∏Q

q=1 Sq. The aim

of player-q, given other players’ strategies s−q, is to choose a strategy that maximizes his

payoff function uq(sq, s−q), i.e.,

maximize
sq

uq(sq, s−q) (B.1)

subject to sq ∈ Sq,

Such optimal strategy is termed as the best response strategy.
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Mathematically, a generic game G can be defined as

G =
(
Ω, {Sq}q∈Ω , {uq}q∈Ω

)
. (B.2)

Definition B.1. A strategy profile s⋆ = (s⋆q, s
⋆
−q) constitutes a (pure) Nash Equilibrium of

game G when

uq(s
⋆
q, s

⋆
−q) ≥ uq(sq, s

⋆
−q), ∀sq ∈ Sq, ∀q ∈ Ω. (B.3)

NE is an important concept in game theory to analyze the outcome of the strategic

interaction between the rational players. In particular, the analysis of NE characterizes

the stable operating point of the game where each player has no incentive to unilaterally

change its strategy, i.e., given other players’ strategies, one player cannot improve its own

utility at a NE. Note that the definition of the NE can be also generalized to contain mixed

strategies, i.e., the possibility of choosing a set of pure strategies by each player. However,

the discussion of this dissertation is limited to the case of pure strategies only. One other

important concept in game theory is Pareto-optimality, which is defined as follows.

Definition B.2. A strategy profile sPO is said to be Pareto-optimal if there is a nonempty

subset of players Ω++ ∈ Ω such that

uq(s
PO) > uq(s), ∀i ∈ Ω++, ∀s ∈ S (B.4)

and

uq(s
PO) ≥ uq(s),∀i ∈ Ω\Ω++,∀s ∈ S. (B.5)

In other words, sPO is Pareto-optimal if there exists no other profiles of strategies of

which one of more players can improve their utility without reducing the utilities of the

others. In general, a NE-achieving strategy is not Pareto-optimal [52].

As mentioned in Section 1.2, CoMP under the IA mode is effectively a SNG where each

cell is a rational player and each BS tries to adopts a strategy to maximize a utility function

only to its connected MSs. Thus, CoMP under the IA mode results in a NE strategy. In

contrast, CoMP under the IC mode results in a Pareto-optimal strategy.

Definition B.3. A strategy profile s is said to be more Pareto-efficient than a strategy

profile s′ if uq(s) ≥ uq(s
′) for each q and uq(s) > uq(s

′) for some q.
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Appendix C

Vector Norms, Matrix Norms, and

Contraction Mapping

C.1 Vector Norms and Matrix Norms

In this appendix, we present some definitions of the vector norms and matrix norms applied

in this work. The weightedmaximum norm of a vector x ∈ CQ, induced by a positive vector

w = [w1, . . . , wQ]
T , is defined as [66]

∥x∥w∞,vec = max
q=1,...,Q

|xq|
wq

. (C.1)

The matrix norm of a matrix A ∈ CQ×Q induced by ∥ · ∥w∞,vec is defined as [66]

∥A∥w∞,mat = max
q=1,...,Q

1

wq

Q∑
r=1

[A]q,rwr. (C.2)

Given X =
∏Q

q=1Xq, where each Xq is a non-empty subset of CNq and where N1+ . . .+

NQ = N , any vector x ∈ X can be decomposed as x = (x1, . . . ,xQ) with xq ∈ Xq. Given a

norm ∥ · ∥q on CNq for each q, the block-maximum norm induced by a positive vector w is

defined as [67]

∥x∥wblock = max
q=1,...,Q

∥xq∥q
wq

. (C.3)
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C.2 Contraction Mapping

C.2.1 Contraction Mapping

Many nonlinear problems are typically solved by iterative methods and the convergence is

a critical consideration. Several iterative algorithms can be stated as

x(t+ 1) = T
(
x(t)

)
, (C.4)

where T is a mapping from a subset X ⊂ CQ into itself that has the property

∥∥T(x(1)
)
−T

(
x(2)
)∥∥ ≤ α

∥∥x(1) − x(2)
∥∥ , ∀x(1),x(2) ∈ X . (C.5)

Here ∥ · ∥ is some norm and the constant α ∈ [0, 1). Then, such a mapping T(x) is a called

a contraction mapping, or simply a contraction, with modulus α and the iteration (C.4) is

called a contracting mapping [67].

Theorem C.1. [67, p. 182] Given that T : X 7→ X is a contraction with modulus

α ∈ [0, 1) and X ⊂ R. Then

(i) The mapping T has a unique fixed point x⋆ ∈ X .

(ii) For every initial vector x(0) ∈ X , the sequence
{
x(t)

}
generated by x(t+1) = T

(
x(t)

)
converges to x⋆ geometrically.

C.2.2 Contraction Over Cartesian Product Sets

Let Tq : X 7→ Xq be the qth (block)-component of T, that is

T(x) =
(
T1(x), . . . ,TQ(x)

)
. (C.6)

Such a mapping will be called a block-contraction if

∥∥T(x(1)
)
−T

(
x(2)
)∥∥

block
≤ α

∥∥x(1) − x(2)
∥∥
block

, ∀x(1),x(2) ∈ X , (C.7)
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where the modulus α ∈ [0, 1). Notice that

∥∥Tq(x
(1))−Tq(x

(2))
∥∥
q
≤ max

r=1,...,Q

∥∥Tr(x
(1))−Tr(x

(2))
∥∥
r

=
∥∥T(x(1))−T(x(2))

∥∥
block

≤ α
∥∥x(1) − x(2)

∥∥
block

, ∀x(1),x(2) ∈ X ,∀q. (C.8)

Given the mapping xq(t + 1) = Tq

(
x(t)

)
, the block-mapping T(x) can be updated

sequentially or simultaneously over the Q blocks. Under the Gauss-Seidel (sequential)

implementation, only one block is updated at a time. For example, with the q-th block-

component is being updated, the block-mapping is given by

T
(
x(t+ 1)

)
=
(
x1(t), . . . ,Tq

(
x(t)

)
, . . . ,xQ(t)

)
. (C.9)

Under the Jacobi (simultaneous) implementation, of all block-components are updated at

the same time. Thus,

T
(
x(t+ 1)

)
=
(
T1

(
x(t)

)
, . . . ,Tq

(
x(t)

)
, . . . ,TQ

(
x(t)

))
. (C.10)

Theorem C.2. [67, p. 186] If T : X 7→ X satisfies the block-contraction property (C.7)

and X is closed, the sequence of vectors from the Gauss-Seidel or the Jacobi update con-

verges to a unique fixed point of T geometrically.



150



151

References

[1] G. Stuber, Principles of Mobile Communication, 3rd ed. New York: USA: Springer,
2011.

[2] 4G Americas, 4G Mobile Broadband Evolution: Release 10, Release 11 and Beyond
- HSPA+, SAE/LTE and LTE-Advanced, Oct. 2012.

[3] D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu, “Multi-cell
MIMO cooperative networks: a new look at interference,” IEEE J. Select. Areas in
Commun., vol. 28, no. 9, pp. 1380–1408, Dec. 2010.

[4] C. Yang, S. Han, X. Hou, and A. Molisch, “How do we design CoMP to achieve its
promised potential?” IEEE Wireless Commun., vol. 20, no. 1, pp. 67–74, Jan. 2013.

[5] P. Marsch and G. Fettweis, Coordinated Multi-point in Mobile Communications:
From Theory to Practice. New York: USA: Cambridge University Press, 2011.

[6] H. Zhang and H. Dai, “Cochannel interference mitigation and cooperative processing
in downlink multicell multiuser MIMO networks,” EURASIP J. Appl. Signal Process.,
vol. 2, pp. 222–235, 2004.

[7] M. Karakayali, G. Foschini, and R. Valenzuela, “Network coordination for spectrally
efficient communications in cellular systems,” IEEE Wireless Commun., vol. 13, no. 4,
pp. 56–61, Aug. 2006.

[8] B. L. Ng, J. Evans, S. Hanly, and D. Aktas, “Distributed downlink beamforming
with cooperative base stations,” IEEE Trans. Inform. Theory, vol. 54, no. 12, pp.
5491–5499, Dec. 2008.

[9] L. Venturino, N. Prasad, and X. Wang, “Coordinated linear beamforming in downlink
multi-cell wireless networks,” IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1451–
1461, Apr. 2010.

[10] H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell multi-antenna
wireless system,” IEEE Trans. Wireless Commun., vol. 9, no. 5, pp. 1748–1759, May
2010.



152 References

[11] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser power control for digital
subscriber lines,” IEEE J. Select. Areas in Commun., vol. 20, no. 5, pp. 1105–1115,
Jun. 2002.

[12] G. Scutari, D. P. Palomar, and S. Barbarossa, “Competitive design of multiuser
MIMO system based on game theory: a unified view,” IEEE J. Select. Areas in
Commun., vol. 26, no. 9, pp. 1089–1102, Sep. 2008.

[13] D. T. Ngo, D. H. N. Nguyen, and T. Le-Ngoc, “Intercell interference coordination:
Towards a greener cellular network,” in Handbook of Green Information and Commu-
nication Systems, M. S. Obaidat, A. Anpalagan, and I. Woungang, Eds. Academic
Press (Elsevier), Nov. 2012, ch. 6, pp. 147–182.

[14] F. Rashid-Farrokhi, L. Tassiulas, and K. J. Liu, “Joint optimal power control and
beamforming in wireless networks using antenna arrays,” IEEE Trans. Commun.,
vol. 46, no. 10, pp. 1313–1323, Oct. 1998.

[15] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beamforming and
power control for cellular wireless systems,” IEEE J. Select. Areas in Commun.,
vol. 16, no. 8, pp. 1437–1450, Oct. 1998.

[16] E. Visotsky and U. Madhow, “Optimum beamforming using transmit antenna ar-
rays,” in Proc. IEEE Veh. Technol. Conf., vol. 1, May 1999, pp. 851–856.

[17] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem
with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18–
28, Jan. 2004.

[18] M. Bengtsson and B. Ottersten, Optimal and suboptimal transmit beamforming. L.
C. Godara, ed., CRC Press, 2001.

[19] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization for
fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–176, Jan.
2006.

[20] Z. Q. Luo and W. Yu, “An introduction to convex optimization for communications
and signal processing,” IEEE J. Select. Areas in Commun., vol. 24, no. 8, pp. 1426–
1438, Aug. 2006.

[21] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with
per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6, pp.
2646–2660, Jun. 2007.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: USA:
John Wiley and Sons, Inc., 1991.



References 153

[23] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filing for Gaussian
multiple-access channels,” IEEE Trans. Inform. Theory, vol. 50, no. 1, pp. 145–152,
Jan. 2004.

[24] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommu., vol. 10, pp. 585–595, Nov./Dec. 1999.

[25] M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29, no. 3, pp.
439–441, May 1983.

[26] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian
broadcast channel,” IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 1691–1706, Jul.
2003.

[27] W. Yu and J. Cioffi, “Sum capacity of Gaussian vector broadcast channels,” IEEE
Trans. Inform. Theory, vol. 50, no. 9, pp. 1875–1892, Sep. 2004.

[28] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates and sum-
rate capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inform. Theory,
vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[29] P. Viswanath and D. Tse, “Sum capacity of the vector Gaussian broadcast channel
and uplink-downlink duality,” IEEE Trans. Inform. Theory, vol. 49, no. 8, pp. 1912–
1921, 2003.

[30] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith, “Sum power
iterative water-filling for multi-antenna Gaussian broadcast channels,” IEEE Trans.
Inform. Theory, vol. 51, no. 4, pp. 1570–1580, Apr. 2005.

[31] W. Yu, “Sum-capacity computation for the Gaussian vector broadcast channel via
dual decomposition,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 754–759, Feb.
2006.

[32] S. Shi, M. Schubert, and H. Boche, “Rate optimization for multiuser MIMO with
linear processing,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 4020–4030, Aug.
2008.

[33] S. S. Christensen, R. Argawal, E. de Carvalho, and J. M. Cioffi, “Weighted sum-
rate maximization using weighted MMSE for MIMO-BC beamforming design,” IEEE
Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799, Dec. 2008.

[34] K.-K. Wong, R. Murch, and K. Letaief, “A joint-channel diagonalization for multiuser
MIMO antenna systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 773–786,
Apr. 2003.



154 References

[35] Q. Spencer, A. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink
spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process.,
vol. 52, no. 2, pp. 461–471, Feb. 2004.

[36] L.-U. Choi and R. Murch, “A transmit preprocessing technique for multiuser MIMO
systems using a decomposition approach,” IEEE Trans. Wireless Commun., vol. 3,
no. 1, pp. 20–24, Mar. 2004.

[37] Z. Pan, K.-K. Wong, and T.-S. Ng, “Generalized multiuser orthogonal space-division
multiplexing,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1969–1973, Jun.
2004.

[38] D. J. Goodman and N. B. Mandayam, “Power control for wireless data,” IEEE Pers.
Commun., vol. 7, pp. 48–54, Apr. 2000.

[39] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control
via pricing in wireless data networks,” IEEE Trans. Commun., vol. 50, no. 2, pp.
291–303, Feb. 2002.

[40] R. Etkin, A. Parekh, and D. N. C. Tse, “Spectrum sharing for unlicensed bands,”
IEEE J. Select. Areas in Commun., vol. 25, no. 3, pp. 517–528, Apr. 2007.

[41] Z.-Q. Luo and J.-S. Pang, “Analysis of iterative waterfilling algorithm for mul-
tiuser power control in digital subscriber lines,” EURASIP J. Applied Sig-
nal Process., vol. 2006, Article ID 24012, May 2006 [Online]. Available:
http://www.hindawi.com/journals/asp/2006/024012/cta.

[42] K. Shum, K.-K. Leung, and C. W. Sung, “Convergence of iterative waterfilling al-
gorithm for Gaussian interference channels,” IEEE J. Select. Areas in Commun.,
vol. 25, no. 6, pp. 1091–1100, Aug. 2007.

[43] G. Scutari, D. P. Palomar, and S. Barbarossa, “Optimal linear precoding strategies for
wideband noncooperative systems based on game theory – Part I: Nash Equilibria,”
IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1230–1249, Mar. 2008.

[44] G. Scutari, D. P. Palomar, and S. Barbarossa, “Optimal linear precoding strategies
for wideband noncooperative systems based on game theory – Part II: Algorithms,”
IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1250–1277, Mar. 2008.

[45] G. Scutari, D. P. Palomar, and S. Barbarossa, “Asynchronous iterative waterfflling
for Gaussian frequency-selective interference channels,” IEEE Trans. Inform. Theory,
vol. 54, no. 7, pp. 2868–2878, Jul. 2008.



References 155

[46] J.-S. Pang, G. Scutari, F. Facchinei, and C. Wang, “Distributed power allocation with
rate constraints in Gaussian parallel interference channels,” IEEE Trans. Inform.
Theory, vol. 54, no. 8, pp. 3471–3489, Aug. 2008.

[47] E. Larsson and E. Jorswieck, “Competition versus cooperation on the MISO inter-
ference channel,” IEEE J. Select. Areas in Commun., vol. 26, no. 7, pp. 1059–1069,
Sep. 2008.

[48] G. Scutari, D. P. Palomar, and S. Barbarossa, “The MIMO iterative waterfilling
algorithm,” IEEE Trans. Signal Process., vol. 57, no. 5, pp. 1917–1935, May 2009.

[49] R. Gohary and H. Yanikomeroglu, “Convergence of iterative water-filling with quan-
tized feedback: A sufficient condition,” IEEE Trans. Signal Process., vol. 60, no. 5,
pp. 2688–2693, May 2012.

[50] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control
algorithm and its convergence,” IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 641–
646, Nov. 1993.

[51] R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE
J. Select. Areas in Commun., vol. 13, no. 7, pp. 1341–1347, Sep. 1995.

[52] P. Dubey, “Inefficiency of Nash equilibria,” Math. Oper. Res., vol. 11, no. 1, pp. 1–8,
Feb. 1986.

[53] E. Bjornson, R. Zakhour, D. Gesbert, and B. Ottersten, “Cooperative multicell pre-
coding: Rate region characterization and distributed strategies with instantaneous
and statistical CSI,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4298–4310, Aug.
2010.

[54] C. Ng and H. Huang, “Linear precoding in cooperative MIMO cellular networks with
limited coordination clusters,” IEEE J. Select. Areas in Commun., vol. 28, no. 9, pp.
1446–1454, Dec. 2010.

[55] C. Shi, R. A. Berry, and M. L. Honig, “Monotonic convergence of distributed interfer-
ence pricing in wireless networks,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul,
Republic of Korea, Jun.-Jul. 2009, pp. 1619–1623.

[56] C. Shi, D. A. Schmidt, R. A. Berry, M. L. Honig, and W. Utschick, “Distributed
interference pricing for the MIMO interference channel,” in Proc. IEEE Int. Conf.
Commun., Dresden, Germany, Jun. 2009, pp. 1–5.

[57] S.-J. Kim and G. B. Giannakis, “Optimal resource allocation for MIMO ad hoc
cognitive radio networks,” IEEE Trans. Inform. Theory, vol. 57, no. 5, pp. 3117–
3131, May 2011.



156 References

[58] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE
approach to distributed sum-utility maximization for MIMO interfering broadcast
channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep. 2011.

[59] D. H. N. Nguyen and T. Le-Ngoc, “Competitive downlink beamforming design in
multiuser multicell wireless systems,” in Proc. IEEE Global Commun. Conf., Miami,
FL, USA, Dec. 2010, pp. 1–6.

[60] D. H. N. Nguyen and T. Le-Ngoc, “Efficient coordinated multicell beamforming with
per-base-station power constraints,” in Proc. IEEE Global Commun. Conf., Houston,
TX, USA, Dec. 2011, pp. 1–5.

[61] D. H. N. Nguyen and T. Le-Ngoc, “Multiuser downlink beamforming in multicell
wireless systems: A game theoretical approach,” IEEE Trans. Signal Process., vol. 59,
no. 7, pp. 3326–3338, Jul. 2011.

[62] D. H. N. Nguyen and T. Le-Ngoc, “Efficient coordinated multicell beamforming with
dynamic base-station assignment consideration,” to appear in IET Communications,
Apr. 2013.

[63] R. Mochaourab and E. Jorswieck, “Resource allocation in protected and shared
bands: Uniqueness and efficiency of Nash equilibria,” in Proc. of ICST/ACM In-
ternational Workshop on Game Theory in Communication Networks (Gamecomm),
Pisa, Italy, Oct. 2009, pp. 68:1–68:10.

[64] T. Ren and R. J. La, “Downlink beamforming algorithms with inter-cell interference
in cellular networks,” IEEE Trans. Wireless Commun., vol. 5, no. 10, pp. 2814–2823,
Oct. 2006.

[65] S. Lasaulce, M. Debbah, and E. Altman, “Methodologies for analyzing equilibria in
wireless games,” IEEE Signal Process. Magazine, vol. 26, no. 5, pp. 41–52, Sep. 2009.

[66] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge University
Press, 1985.

[67] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods. New Jersey: Prentice-Hall, 1989.

[68] A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences.
New York: Academic, 1979.

[69] R. W. Cottle, J.-S. Pang, and R. E. Stone, The linear complementarity problem.
Cambridge, UK: Academic, 1992.



References 157

[70] T. Alpcan and L. Pavel, “Nash equilibrium design and optimization,” in Proc. Int.
Conf. on Game Theory for Networks (GameNets’ 09), Istanbul, Turkey, May 2009,
pp. 164–170.

[71] H. Nguyen-Le, D. H. N. Nguyen, and T. Le-Ngoc, “Game-based zero-forcing precod-
ing for multicell multiuser transmissions,” in Proc. IEEE Veh. Technol. Conf., San
Francisco, CA, USA, Sep. 2011, pp. 1–5.

[72] D. H. N. Nguyen and T. Le-Ngoc, “Block diagonalization precoding game in a mul-
tiuser multicell system,” in Proc. IEEE Wireless Commun. and Networking. Conf.,
Shanghai, China, Apr. 2013.

[73] D. H. N. Nguyen, H. Nguyen-Le, and T. Le-Ngoc, “Block-diagonalization precoding
in a multiuser multicell MIMO system: Competition and coordination,” submitted to
IEEE Trans. Wireless Commun., Apr. 2013.

[74] R. Zhang, “Cooperative multi-cell block diagonalization with per-base-station power
constraints,” IEEE J. Select. Areas in Commun., vol. 28, no. 9, pp. 1435–1445, Dec.
2010.
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