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© INTRODUCTION AND MOTIVATION
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THE FUTURE OF WIRELESS COMMUNICATIONS
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Figure courtesy of Informa Telecoms & Media.

@ Rapid increase in subscriptions to mobile broadband services
@ Higher throughput, higher robustness, and better coverage
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THE FUTURE OF WIRELESS COMMUNICATIONS
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@ Technical challenges: efficient utilization of the radio spectrum
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MIMO COMMUNICATIONS
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@ Multiple-input Multiple-Output (MIMO): using multiple
transmit/receive antennas
@ MIMO precoding (beamforming) — Higher spectral efficiency
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MIMO CONFIGURATIONS
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COORDINATED MULTIPOINT TRANSMISSION/RECEPTION

@ Cellular networks — inter-cell interference (ICl)
@ Coordinated Multipoint Transmission/Reception (CoMP)

» Coordinate simultaneous transmissions from multiple BSs to the MSs

» Actively deal with the ICI by the means of MIMO precoding

@ CoMP is a key technology for Long-Term Evolution (LTE)-Advanced
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CoMP Modes
Competition versus Coordination
Interference Aware (IA) versus Interference Coordination (IC)
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CHALLENGES IN COMP PRECODING DESIGNS

A paradigm shift in precoding designs
Independent per-cell approach to coordinated multicell approach

@ Large-scale and distributed multicell network
o CSI: difficult to acquire

@ Limited backhaul links for control/signaling
@ Nonconvex precoding design problems
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RESEARCH STATEMENT

Competition and Coordination in Multicell Wireless Systems
Distributed strategies in precoding designs and ICl management

@ Distributed algorithms for precoding designs and ICl management
@ Local computation with local CSI

@ Define and quantize the control/signaling messages

@ Achievable optimality versus computational complexity
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RESEARCH CONTRIBUTIONS
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Develop low-complexity and distributed algorithms
Devise the structure of the CoMP precoders
Devise the message exchange mechanism

e ¢ ¢ ¢

Expose new perspectives and understanding the interactions between
the coordinated BSs in a CoMP system
@ Design criteria:

» Power minimization and Sum-rate maximization
» |A and IC
» Uplink and Downlink
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DOWNLINK BEAMFORMING FOR POWER
MINIMIZATION: A GAME-THEORETICAL APPROACH
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@ Beamforming design to minimize the transmit power at each BS
@ Guaranteed SINR requirement at each MS
SINR,, > ™ Vg, Vi (1)

[J1] D. H. N. Nguyen and T. Le-Ngoc, “Multiuser downlink beamforming in multicell wireless systems: A game theoretical
approach,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3326-3338, Jul. 2011.

[J2] D. H. N. Nguyen and T. Le-Ngoc, “Efficient coordinated multicell beamforming with dynamic base-station assignment
consideration,” to appear in IET Communications, 2013.

[C1] D. H. N. Nguyen and T. Le-Ngoc, “Competitive downlink beamforming design in multiuser multicell wireless systems,”
in Proc. IEEE Global Commun. Conf., Miami, FL, USA, Dec. 2010, pp. 1-6.

[C2] D. H. N. Nguyen and T. Le-Ngoc, “Efficient coordinated multicell beamforming with per-base-station power
constraints,” in Proc. IEEE Global Commun. Conf., Houston, TX, USA, Dec. 2011, pp. 1-5.
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DOWNLINK BEAMFORMING GAME (IA MODE)

@ SINR at a particular MS BS-1
‘th ' 2 (TR g 1| . zll~CN(0,02)
SINqu — = q; 494 ’ | W11 | X, l I yJi
2 |
S |wihgg | +r—g W l th &—— Y,
j;éi‘ qj '____12___: z, ~CN(0.0%) "
. BS-2
where r_g,: sum ICl + noise. U, 7 == ! -
. . —T W b—— Yy,
@ Each BS is aware of the ICl at its U | X2 221~CN(0,02) ’
connected MSs and selfishl e HIN L ey
y l A s TEte

adjusts its precoders accordingly =~ ~—————-

o Multicell game Gp = (2, {Py(W_)} 0+ {ta(Wo)}yen )
Players €2: base-stations
Utility function: t,(W) = S5 [lw,, ||
Set of admissible strategies: P,(W_,) = {SINR;(W,) > /™" Vi}
o W*={W;}2 isa Nash Equilibrium (NE) if
tg(Wg) <tg(Wy), YWq € Py(WZ,), Vge. (2)
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DOWNLINK BEAMFORMING GAME (CONT.)

@ Study the NE of game Gp
@ Unique NE if it exists A

Pareto-optimal tradeoff curve

— Best response strategies proved
to converge (standard functions)

@ Sufficient and necessary
conditions: low ICl guarantees 04f
the NE’s existence F----—--

minimum required
power at cell-2

minimum required
power at cell-1

@ IC to obtain Pareto-optimality

0 0‘2 O‘.A 0‘.6 0.‘8 i 1‘2 14
@ To improve the NE's efficiency, modify the utility function
K Q K
2 H 2
$q(Wy) = Z [w, [I” + Z Z Tgr; ”Wq h,, ” J
i=1 r#q j=1

where 7, interference price charged on the ICl
@ The new game G/ is able to obtain a Pareto-optimal solution
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CONVERGENCE
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COMPETITION versus COORDINATION
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S ST NN

o
©

1=
=

o
=

Y

Probability of the Existence of an Equilibrium
o
[N

.21 = * ~IA Mode (C)

-v-1A Mode (C1)
- ®-ICMode .
- = -1A Mode - Pricin .o

8.3 05

Average Power Consumptioﬁwla(cz (in dB)

Transmit Power

30y
,r“‘/—
e
e
/'/
20 -~
« a--w-
- _e--®
# e
a e
/i /r”/.
10- 2%
g
&
o-
- »-1A Mode
- -IC Mode
- = -1A Mode - Priciny
—1 . I
. 05 0.7 0.9 11
d

@ Target SINRs: 7, = 10 dB (dashed lines) and v, = 0 dB (solid lines)

@ Coordination —» power savings, better coverage

@ Interference pricing — limit ICl — improve the efficiency of the

game's NE
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BLOCK-DIAGONALIZATION PRECODING:
COMPETITION AND COORDINATION
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Precoding design to maximize the sum-rate at each cell

Power constraint at each BS

Block-Diagonalization (BD) precoding: suppress intra-cell interference
BD-Dirty Paper Coding (BD-DPC): to further enhance the sum-rate
performance

D. H. N. Nguyen, H. Nguyen-Le, and T. Le-Ngoc, “Block-diagonalization precoding in a multiuser multicell MIMO
system: Competition and coordination,” submitted to IEEE Trans. Wireless Commun., Apr. 2013.

H. Nguyen-Le, D. H. N. Nguyen, and T. Le-Ngoc, “Game-based zero-forcing precoding for multicell multiuser
transmissions,” in Proc. IEEE Veh. Technol. Conf., San Francisco, CA, USA, Sep. 2011.

D. H. N. Nguyen and T. Le-Ngoc, “Block diagonalization precoding game in a multiuser multicell system,” in Proc.
IEEE Wireless Commun. and Networking. Conf., Shanghai, China, Apr. 2013. 16/31



BD PRECODING - COMPETITION

@ Multicell game G = (Q, {Sq}qeﬁv {Rq(Qq)}qu)
» Players Q: base-stations
» Utility function: R,(Q,) = Zfil log ‘I + th R:;i(Q—(I)H(I(Ii qu|
» Set of admissible strategies

K
Sq = {th : ZTI‘{Q%} S an qu i 07 H‘Z‘ZleZi = O,Vj 7& Z}
=1

° (Q;,Q~,) is a NE of game Gr, if
Rq ( ;’ *—q) = Rq (Qcp iq) ) qu € Sq, Vq e Q. (3)

@ Obtain closed-form best-response (water-filling) strategies by solving
maximize R, , Q- 4
maximize y(Qy. Q) *)

AR 1) °¢

subject to Qg € Sy, Vi.

@ Convergence proved by the contraction mapping
@ A NE is always existent and unique at low ICl
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BD PRECODING - COORDINATION

@ Joint weighted sum-rate maximization Nonconvex
Problem
Q
maximize qu q(quQ—q) (5)
Q1,-,Qq =1 v

Linear
Approximation

subject to Qg € Sy, Vi, Vq.

K]
-]
‘v
@ Nonconvex — iterative linear approximation (ILA) M
\d a
to ) per-cell convex problems Multiple Convex S
Q
L. Problems 3
maximize wqeR;(Qq, Q E Tr{A;Qq} g
gl g -

subject to Qq, € Sy, Vi, (6) '

Local Optimal
Solution

where A, interference price charged on the ICl
@ Monotonic convergence to a local maximum (Gauss-Seidel update
proved, Jacobi update observed)
@ Distributed implementation with message exchange between BSs to

compute the price A,'s .



CONVERGENCE
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@ Coordination — slower to converge than
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NETWORK SUM-RATE

Achievable Network Sum-rate (bits/s/Hz)
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e DPC > BD-DPC > BD
@ Coordination >> Competition, especially at high ICI region
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@ Performance saturated at high ICI region with competition

— Coordination
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MuLTICELL MIMO-MAC - COORDINATION

o AN
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@ Successive interference cancelation (SIC) on a per-cell basis
@ Precoding design to maximize the weighted sum-rate in the uplink

Q K
i log |T —1 H, X, HY
B I e

subject to Tr{X,} < F,,, Vi,Vq
Xg = 0, Vi,Vq.

[J4] D. H. N. Nguyen and T. Le-Ngoc, “Sum-rate maximization in the multicell MIMO multiple-access channel with
interference coordination,” to appear in IEEE Trans. on Wireless Commun., 2013.

[C5] D. H. N. Nguyen and T. Le-Ngoc, “Sum-rate maximization in the multicell MIMO multiple-access channel with
interference coordination,” in Proc. IEEE Wireless Commun. and Networking. Conf., Paris, France, Apr. 2012.
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ILA SOLUTION APPROACH

@ Approximation and decomposition into () per-cell outer problems

K K
maximize w,log Ry + > Hgg X HE | =Y " Tr{A, X} (8)
i=1

q1 ottt aK i=1
subject to Tr{X,,} < P,,, Vi
Xy =0,

where A,,;: interference pricing charged on the ICI.
@ Further decomposition into K per-user inner problems

maxgimize wq log ’I + R, Hy, X HIL | — Tr{Ag, X, } 9)
53
subject to Tr{X} < P,,, X, = 0,
— K H
where Ry, = Rg + 357, Hq, X, Hy,

@ Monotonic convergence to a local maximum (Gauss-Seidel update
proved, Jacobi update observed)

@ Distributed implementation with message exchange between BSs to
compute the price Ag,'s
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WMMSE SOLUTION APPROACH

@ Transform the original nonconvex problem into a matrix weighted
sum-MSE minimization problem (WMMSE)

Q K
minimize w Tr{W_ E_ .} —log |W,. 10
Wo, VU, qz:l q; [ { i ‘h} g| q1|] ( )

subject to Tr {tiVg} < P,,Vq,Vi,

where V. transmit beamformer, U,,: receive beamformer, W,,:
weight matrix, and E,,;: MSE matrix.

@ Not jointly convex, but convex in each set of variables V,, U,,, W,
@ lterative update across each set of variables in closed-form solutions

@ Distributed implementation with monotonic convergence to a local
optimum proved (also a local optimum of the original problem)
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CONVERGENCE
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@ Monotonic convergence for both ILA and WMMSE algorithms

@ ILA: Jacobi (simultaneous) update converges faster than Gauss-Seidel
(sequential) update

@ ILA converges faster than WMMSE

@ Coordination — higher network sum-rate than competition
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NETWORK SUM-RATE

Full Convergence 10 Iterations
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o Full convergence: ILA =~ WMMSE > Competition
@ Limited iteration: ILA > WMMSE > Competition
@ Coordination: require BS < BS signaling
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MurTIiCELL MIMO-BC - COORDINATION

ICI \

. BS1 e BS2

@ Dirty Paper Coding (DPC) on a per-cell basis
@ Precoding design to maximize the weighted sum-rate in the downlink
Q ‘qu +H (Z] 1 Q‘h) q9; (11)

maximize Z Wq Z log
Q1,.-,Qo ) o ‘qu + I‘Iqq7 (Z Qq7) aqi

K
subject to Z Tr{Qy } < P, Vg; Qg = 0,Vi, Vq.
i=1

[J5] D. H. N. Nguyen and T. Le-Ngoc, “Sum-rate maximization in the multicell MIMO broadcast channel with interference

coordination,” submitted to IEEE Trans. Signal Process., Apr. 2013.
[C6] D. H. N. Nguyen and T. Le-Ngoc, “Sum-rate maximization in the multicell MIMO broadcast channel with interference

coordination,” in Proc. IEEE Int. Conf. Commun., Budapest, Hungary, Jun. 2013. 26/31



ILA SOLUTION APPROACHES

@ Approximation and decomposition into () per-cell outer problems

K th +qu1 (Zi':l Qq) HHi K
maximize wg » log Z_l AN —ZTr{Aqui} (12)
QurrQaxe i=1 ‘qu +Hgg, (Zj:l Q(Ij) HE | =
K
subject to ZTr{qu} < P,, Q4 = 0,Vi,
i=1

where A,: interference pricing charged on the ICI.
@ Still a nonconvex problem
@ Connection to the MAC problem via the uplink-downlink duality

K K
maximize wqlog |I+ H? X, H,, |- Tr{Xy, 13
Koy Xge 1 & ; qq: a1 199 ; {Xa} (13)

subject to X, = 0, Vi,

where H,,, = Rq_il/Qqui(Aq + AI)~Y2, X: Lagrangian multiplier.
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ILA SOLUTION APPROACHES

Jacobi or Gauss-Seidel

T MAC-BC Transformation

Nonconvex Linear ¥ _| Multiple Outer Local Optimal
Problem "| Approximation Problems [ Y Solution
L 777777777777777 1
Update A
BC > MAC

@ Convergence and global optimality of the outer problem proved

@ Distributed implementation with monotonic convergence to a local

optimum proved (also a local optimum of the original problem)

@ WMMSE algorithm

» Similar to the multicell MIMO-MAC
» Transform to an equivalent WMMSE problem
» lterative updates to each set of variables
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CONVERGENCE
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@ Convergence to the globally optimal solution of the outer problem
@ Monotonic convergence for both ILA and WMMSE algorithms
@ ILA: Jacobi (simultaneous) update converges faster than Gauss-Seidel
(sequential) update
@ Coordination — higher network sum-rate than competition
29/31



NETWORK SUM-RATE

Full Convergence 10 Iterations
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o Full convergence: ILA =~ WMMSE > Competition
@ Limited iteration: ILA > WMMSE > Competition
@ Nonlinear precoding (DPC) > Linear precoding
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CONCLUSION AND Q&A
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@ Multicell multiuser MIMO to improve spectral efficiency

@ Multicell coordination — power savings, sum-rate enhancement over
multicell competition

@ Precoding with multicell coordination: more complex, more signaling

@ Various precoding techniques: linear MMSE, BD and BD-DPC, MAC
with SIC, BC with DPC

Q&A
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