EE653 - Coding Theory

Lecture 2: Background on Abstract Algebra

Dr. Duy Nguyen

January 18, 2017

SAN DIEGO STATE UNIVERSITY

Leadership Starts Here

Outline

Definition 1

A binary operation * on a set G is a rule that for each $a \in G, b \in G$ assigns c = a * b, such that $c \in G$.

Definition 2

A group consists of a set G and a binary operation * with the following properties:

- Associativity: (a * b) * c = a * (b * c) for $a, b, c \in G$.
- Existence of Identity: There exists e ∈ G such that a * e = e * a = a, for all a ∈ G.
- Set Existence of Inverse: For each a ∈ G, there exists a unique element a⁻¹ ∈ G such that a * a⁻¹ = a⁻¹ * a = e.

Properties of Groups

Theorem 1 The identity element is unique.

Proof?

Theorem 2

The inverse of an element a in group is unique.

Proof?

Definition 3

A group is said to be **commutative** or **abelian** if also satisfies: Commutativity: For all $a, b \in G$, a * b = b * a.

- If a group is commutative, then the group operation is often represented as "+"
- Examples of groups:
 - ► The set of integers forms a commutative group under addition.
 - The set of integers does not form a group under multiplication. Why?
 - The set of rational numbers excluding zero forms a group under multiplication.
 - ► The set of (*n* × *n*) matrices with real elements forms a commutative group under matrix addition

Definition 4

The order or cardinality of a group is the number of elements in the group.

Definition 5

If the order or a group is finite, the group is a **finite group**. Otherwise, it is an **infinite group**.

Finite groups using modulo arithmetic

- In ECC, we are concerned with finite groups.
- Construction of finite groups using modulo arithmetic on integers:
 - ► The result of addition modulo m of a, b ∈ G is the remainder, c, of a + b divided by m, where 0 ≤ c ≤ m − 1:

$$a+b=k\cdot m+c,$$

where k is the largest integer such that

 $k \cdot m < (a+b).$

Modulo addition can be expressed in several ways. We will start with a more-descriptive form than in the text:

$$a+b \equiv c \mod m.$$

Construction of Groups Using Modulo Addition

- Define G by $G = \{0, 1, 2, \dots, m-1\}$
- Define $c = a \boxplus b$ by $a + b \equiv c \mod m$
- Then (G, \boxplus) is a group:
 - ▶ $a \boxplus b$ is an integer between 0 and m-1, so G is closed under \boxplus
 - Is associative
 - Identity element under ⊞ is zero a ⊞ 0 = a, a ⊞ b = a ⇒ b = km, but b = km ⇒ b = 0 (identity is unique)
 - ▶ For a in G, m a is also in G. Let $c = a \boxplus m a$. Then

$$a + m - a \equiv c \mod m$$
$$m \equiv c \mod m$$
$$\Rightarrow m = k \cdot m + c \Rightarrow c = 0$$

(Inverses are in G.)

 \blacktriangleright This defines an additive group over the integers $\mod m$ Groups and Rings

Construction of Groups Using Modulo Multiplication

- Suppose we select a prime number p, and let $G = \{1, 2, \dots, p-1\}$.
- Define \boxdot by $c = a \boxdot b$ if $a \cdot b \equiv c \mod p$.
- (G, \boxdot) is then a group of order p-1

Claim: (G, \boxdot) is a group of order p-1

- Associativity
- Identity: clearly $a \boxdot 1 = a$
- Inverse: Let $i \in G$ be an element for which we want to find an inverse by Euclid's Theorem, $\exists a, b$ such that

$$a \cdot i + b \cdot p = 1$$

and a,p are relatively prime. We then have $a \cdot i = -b \cdot p + 1.$ What next?

Subgroup

Definition 6

Subgroup: If H is a nonempty subset of G and H is closed under * and satisfies all the conditions of a group, then H is a subgroup of G.

Example: G: rational numbers under real addition. H: integers under real addition

Theorem 3

Let G be a group under binary operation *. Let H be a non-empty subset of G. Then H is a subgroup of G if the following conditions hold:

• *H* is closed under *

• For any element a in H, the inverse of a is also in H.

Proof?

Coset

Definition 7

Let H be a subgroup of G with binary operation *. Let a be an element of G. Then the set of elements $a * H \triangleq \{a * h : h \in H\}$ is called a left coset of H; the set of elements $H * a \triangleq \{h * a : h \in H\}$ is called a right coset of H.

For a commutative group, left and right cosets are identical. Hereafter, we just call them cosets.

Theorem 4

Let H be a subgroup of a group G under binary operation *. No two elements in a coset of H are identical.

Theorem 5

Let H be a subgroup of a group G under binary operation *. No two elements in two different cosets of H are identical.

Definitions: Rings

Definition 8

A ring is a collection of elements R with two binary operations, usually denoted "+" and ":" with the following properties:

- (R,+) is a commutative group. The additive identity is labeled "0".
- **2** · is Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- **Oistributes over** +.

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) \,.$$

Definitions: Rings

Definition 9 A ring is a commutative ring if \cdot is commutative: $a \cdot b = b \cdot a$.

Definition 10 A ring is a ring with identity if \cdot has an identity, which is labeled "1".

Outline

Fields

Definitions: Fields

Definition 11

A **field** is a commutative ring with identity in which every element has an inverse under \cdot .

Essentially, a field is:

- ▶ a set of elements *F*
- with two binary operations + (addition) and \cdot (multiplication).
- "+", ".", and inverses can be used to do addition, subtraction, multiplication, and division without leaving the set.

Definitions: Fields

Definition 12

Formal definition: A **field** consists of a set F and two binary operations + and \cdot that satisfy the following properties:

- F forms a commutative group under addition (+). The additive identity is labeled "0".
- **2** $F \{0\}$ forms a commutative group under multiplication (·). The multiplicative identity is labeled "1".
- If the operation "·" distributes over +:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) \,.$$

Fields: Examples

Examples of Fields

- The rational numbers
- The integers do not form a field because they do not form a group under "·". (There are no multiplicative inverses.)
- The real numbers
- The complex numbers

Observe that they are all infinite fields.

Properties of Fields

- **Property I.** For every element a in a field, $a \cdot 0 = 0 \cdot a = 0$. **Proof**?
- Property II. For any two nonzero elements a and b in the field, a ⋅ b ≠ 0.
 Proof: The nonzero elements are closed under .
- **Property III.** If $a \cdot b = 0$ and $a \neq 0$, then b = 0. **Proof:** From Property II.
- **Property IV.** For $a \neq 0$, $a \cdot b = a \cdot c$ implies b = c. **Proof:** Multiply each side by a^{-1} .

Finite Fields

- Finite fields are more commonly known as Galois Fields after their discoverer
- A Galois field with p members is denoted GF(p)
- Every field must have at least 2 elements:
 - the additive identity '0', and
 - the multiplicative identity '1'

Binary Fields

There exists a finite field with 2 elements: the binary field, denoted GF(2)

•
$$F = \{0, 1\}$$

+ defined as modulo-2 addition

$$\begin{array}{c|ccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

• defined as modulo-2 multiplication

$$\begin{array}{c|cc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

It is easy to verify that · distributes of + by trying each of the 8 possible combinations

GF(p)

Given a prime number p, the integers $\{0, 1, 2, \ldots, p-1\}$ form a field under modulo p addition and multiplication.

- $\blacksquare~\{0,1,\ldots,p-1\}$ is a commutative group under mod p addition
- $\blacksquare~\{1,\ldots,p-1\}$ is a commutative group under mod p multiplication
- modulo multiplication distributes over modulo addition

Examples of GF(3)

- The next smallest group after GF(2) is GF(3), $F = \{0, 1, 2\}$
 - \blacktriangleright + defined by

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1
	0	1	2
	0	1	2
0 1			

► · defined by

Constructions of Finite Fields

- Modulo arithmetic can be used to construct fields of size p, where p is prime.
- Modulo arithmetic cannot be used to construct fields of size p if p is not prime.
- Finite fields **GF**(q) do not exist for all q.
- However, finite fields GF(q) do exist if $q = p^m$, where p is prime and m > 1.
- GF(p^m) is called an extension field of GF(p) because it is constructed as a vector space over GF(q).

Subtraction and Division in Fields

■ Subtraction over the field: to subtract *b* from *a*, find the additive inverse of *b* (call it −*b*) and add it to *a*:

$$a-b=a+(-b)\,.$$

■ Division over the field can be defined in the same way: to divide a by b, first find the multiplicative inverse of b (call it b − 1), and multiply it by a:

$$a/b = a \cdot b^{-1}.$$

Outline

Definition: Vector Space

Definition 13

- A vector space consists of:
 - V, a set of elements called vectors;
 - *F*, a field of elements called scalars;
 - +, a binary operator on $V \ni \forall \underline{v}_1, \underline{v}_2 \in V$, $\underline{v}_1 + \underline{v}_2 = \underline{v} \in V$, called vector addition;
 - •, a binary operator on F and Vif $a \in F$, $\underline{v} \in V$, $a \cdot \underline{v} = \underline{w} \in V$ called scalar multiplication;

that satisfy the five properties below.

Properties of Vector Spaces

(i) V is a commutative group under +(ii) $\forall a \in F, v \in V, a \cdot v \in V$ (closed under scalar multiplication) (iii) $\forall u, v \in V \text{ and } a, b \in F$ $a \cdot (u+v) = a \cdot u + a \cdot v$ $(a+b) \cdot v = a \cdot v + b \cdot v$ (\cdot distributes over +) (iv) $\forall v \in V, a, b \in F$, $(a \cdot b) \cdot v = a \cdot (b \cdot v)$

(v) The multiplier identity $1 \in F$ is the identity for scalar multiplication

$$1 \cdot \underline{v} = \underline{v}.$$

Properties of Vector Spaces

The additive identity of V is denoted by $\underline{0}$. Additional Properties:

$$\begin{aligned} & \text{I) } 0 \cdot \underline{v} = 0 \ \forall v \in V \\ & \text{II) } c \cdot \underline{0} = \underline{0} \\ & \text{III) } (-c) \cdot \underline{v} = c \cdot (-\underline{v}) = -(c \cdot \underline{v}) \end{aligned}$$

Common Vector Spaces

■ n-tuples
$$(\underline{v}) = (v_0, v_1, \dots, v_{n-11})$$

► each $v_i \in F$

• + defined by
$$\underline{u} = (u_0, u_1, \dots, u_{n-1})$$
 then
 $u + v = (u_0 + v_0, u_1 + v_1, \dots, u_{n-1} + v_{n-11})$

• defined by $a \in F$, $a \cdot \underline{v} = (av_0, av_1, \dots, av_{n-1})$

We will focus on F = GF(2) or $GF(2^m)$.

Linear Combinations

Definition 14

Let $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n \in V$ and $a_1, a_2, \dots, a_n \in F$. Then $a_1\underline{v}_1 + a_2\underline{v}_2 + \dots + a_n\underline{v}_n \in V$ is a linear combination of v_1, v_2, \dots, v_n .

Definition 15

If $G = \{\underline{v}_0, \underline{v}_1, \dots, \underline{v}_n\}$ is a collection of vectors \ni the linear combinations of vectors in G is all vectors in a vector space V, then G is a spanning set for V

Example

Let V_n denote the vector space of *n*-tuples whose elements $\in GF(2)$

$$V_4 = \begin{array}{ccccc} (0000) & (0001) & (0010) & (0011) \\ (0100) & (0101) & (0110) & (0111) \\ (1000) & (1001) & (1010) & (1011) \\ (1100) & (1101) & (1110) & (1111) \end{array}$$

Then $G = \{(1000), (0110), (1100), (1001), (0011)\}$ is a spanning set for V (G spans V). Note: The vectors in G are *linearly dependent*.

Linearly Independent

Definition 16

- A set of vectors <u>v</u>₁, <u>v</u>₂,..., <u>v</u>_k in a vector space V over a field F are linearly dependent if ∃a₁, a₂,..., a_k ∈ F
 ∋ a₁<u>v</u>₁ + a₂<u>v</u>₂ + ··· + a_k<u>v</u>_k = 0, and at least one a_i ≠ 0.
- Otherwise $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_k$ are linearly dependent.

Ex:(cont) The vectors in G are linearly dependent because (for example)

(0110) + (1100) + (0011) = (1001)

(i.e., the sum of these four is $\underline{0}$) Vectors are linearly dependent if one can be expressed as the linear combination of the others. We can delete (1001) from G and still have a spanning set for V. However, we cannot delete any more vectors and still have a spanning set for V.

Definition 17

A spanning set for V is a basis for V if it has minimum cardinality.

Example: Bases for V_4 Clearly $\{(1000), (0110), (1100), (0011)\}$ is a basis for V_4 . A common basis for V_n is the *canonical basis*. **Example:** Canonical basis for V_4 : $\{(1000), (0100), (0010), (0001)\}$

Definition 18

The dimension of a vector space V, written $\dim(V)$, is the cardinality of a basis for V.

Theorem 6

Let $\{v_0, v_1, \ldots, v_{k-1}\}$ be a basis for a vector space V. For every $\underline{v} \in V$, there is a unique representation

$$\underline{v} = a_0 \underline{v}_0 + a_1 \underline{v}_1 + \dots + a_{k-1} \underline{v}_{k-1}.$$
(1)

Definition 19

If V is a vector space over a field F and $S \subset V$ is also a vector space over F, then S is a subspace of V.

Theorem 7

(Theorem 2.18) Let $S \subset V$, $S \neq \emptyset$ then S is a subspace of V if: i) $\forall \underline{u}, \underline{v} \in S$, $\underline{u} + \underline{v} \in S$. ii) $\forall a \in F, \underline{u} \in S$, $a \cdot \underline{u} \in S$

Theorem 8

(Theorem 2.19) Let $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k \in V$ over F. The set of all linear combinations of $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$ forms a vector subspace of V.

Inner Product

Definition 20

Let $\underline{u}, \underline{v} \in V$, a vector space of n-tuples over a field F. Then the inner (or dot) product of \underline{u} and \underline{v} is

$$\underline{u} \cdot \underline{v} = u_0 v_0 + u_1 v_1 + \dots + u_{n-1} v_{n-1}$$
$$= \sum_{i=0}^{n-1} u_i v_i,$$

which is a scalar.

Properties of Inner Product

- (i) Commutativity $\Rightarrow \underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$
- (ii) Associativity $\Rightarrow (a \cdot \underline{u}) \cdot \underline{v} = a \cdot (\underline{u} \cdot \underline{v})$
- (iii) Distributivity over $+ \Rightarrow \underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$

Definition 21 If $\underline{u}, \underline{v} \in V$ (a vector space), and $\underline{u} \cdot \underline{v} = 0$, then \underline{u} and \underline{v} are orthogonal.

Null Space

Definition 22

- Let S be a dim k subspace of V_n . Let S_d be all vectors in $V_n \ni$ if $\underline{u} \in S, \ \underline{v} \in S_d, \ \underline{u} \cdot \underline{v} = 0.$
- Then S_d is also a subspace of V_n, and S_d is called the null space or dual space of S.

Null Space

Proof that S_d is a subspace of V_n : S_d is nonempty, since $\underline{0} \cdot \underline{u} = 0, \forall \underline{u} \in V_n \Rightarrow \underline{0} \in S_d.$ Suppose $\underline{v} \in S_d, \underline{w} \in S_d$. Then $\underline{v} \cdot \underline{u} = 0$ and $\underline{w} \cdot \underline{u} = 0 \forall \underline{u} \in S$ (i) $(v + w) \cdot u = (v \cdot u) + (w \cdot u) = 0$ $\Rightarrow \underline{v} + \underline{w} \in S_d$ (ii) For any $a \in F$, $(a \cdot \underline{w}) \cdot \underline{u} = a \cdot (\underline{w} \cdot \underline{u}) = a \cdot 0 = 0$ $\Rightarrow a \cdot \underline{w} \in S_d$

(i) & (ii) \Rightarrow any linear combination of vectors in S_d is in S_d . $\Rightarrow S_d$ is a subspace of V.

Null Space

Theorem 9

The dimension theorem: Let S be a finite dimensional vector subspace of V and let S_d be the corresponding dual space. Then

 $\dim(S) + \dim(S_d) = \dim(V).$

 $k \times n$ matrix over GF(q)

k rows

n columns

$$\bullet g_{i,j} \in GF(q)$$

$$\underline{G} = \begin{bmatrix} g_{00} & g_{01} & \cdots & g_{0,n-1} \\ g_{10} & g_{11} & \cdots & g_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1,n-1} \end{bmatrix}$$

 \underline{G} is also abbreviated as $[g_{ij}]$.

Let \underline{g}_i denotes the vector of the i^{th} row

$$g_i = \left[\begin{array}{ccc} g_{i0} & g_{i1} & \cdots & g_{i,n-1}\end{array}\right]$$
(2)

Then,

$$\underline{G} = \begin{bmatrix} \underline{g}_0 \\ \underline{g}_1 \\ \vdots \\ \underline{g}_{k-1} \end{bmatrix}$$

Vector Spaces

(3)

If the k rows $\underline{g}_0,\ldots,\underline{g}_{k-1}$ are linearly independent, then:

- There are q^k linear combination of the g_i
- These *q^k* vectors form a *k*-dimensional vector space over the *n*-tuples over *GF*(*q*), called the *row space* of <u>*G*</u>.

Any matrix G may be transformed by elementary row operations (swapping rows, adding rows) into a matrix G' that has the same row space.

If S is the row space of $\underline{G}_{n \times n}$, then the null space S_d has dim n - k. Let $\underline{h}_0, \underline{h}_1, \ldots, \underline{h}_{n-k-1}$ denotes n - k linearly independent vectors in S_d and

$$\underline{H} = \begin{bmatrix} \underline{h}_{0} \\ \underline{h}_{1} \\ \vdots \\ \underline{h}_{n-k-1} \end{bmatrix}$$
(4)

Then the row space of \underline{H} is S_d . The row space of G is the null space of H, and vice versa.

More Matrix Operations

Matrix addition and multiplication is as expected: Addition is componentwise for 2 matrices of the same size:

$$[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$
(5)

Multiplication of a $k \times n$ matrix A by an $n \times l$ matrix B yields a $k \times l$ matrix C.

$$c_{ij} = \underline{a}_i \cdot \underline{b}_j \tag{6}$$

where \underline{a}_i is the i^{th} row of A \underline{b}_j is the j^{th} column of B.

$$c_{ij} = \sum_{t=0}^{n-1} a_{it} b_{tj}$$
 (7)

More Matrix Operations

 $\underline{G}^T = \text{transpose of } \underline{G} = n \times k \text{ matrix whose columns are the rows of } \underline{G}.$ $\underline{I}_k = k \times k \text{ Identity matrix} = \begin{cases} 1 & \text{in } (i,i) \text{ positions} \\ 0 & \text{elsewhere} \end{cases}$ **Example:**

$$\underline{I}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Submatrix of \underline{G} = matrix created by removing rows and/or columns from \underline{G} .