EE653 - Coding Theory

Lecture 2: Background on Abstract Algebra

Dr. Duy Nguyen

January 18, 2017

Outline

(1) Groups and Rings

(2) Fields

3 Vector Spaces

Definitions

Definition 1
A binary operation $*$ on a set G is a rule that for each $a \in G, b \in G$ assigns $c=a * b$, such that $c \in G$.

Definition 2
A group consists of a set G and a binary operation * with the following properties:
(1) Associativity: $(a * b) * c=a *(b * c)$ for $a, b, c \in G$.
(2) Existence of Identity: There exists $e \in G$ such that $a * e=e * a=a$, for all $a \in G$.
(3) Existence of Inverse: For each $a \in G$, there exists a unique element $a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$.

Properties of Groups

Theorem 1
The identity element is unique.
Proof?

Theorem 2
The inverse of an element a in group is unique.
Proof?

Definitions

Definition 3
A group is said to be commutative or abelian if also satisfies:
Commutativity: For all $a, b \in G, a * b=b * a$.

- If a group is commutative, then the group operation is often represented as " + "
- Examples of groups:
- The set of integers forms a commutative group under addition.
- The set of integers does not form a group under multiplication. Why?
- The set of rational numbers excluding zero forms a group under multiplication.
- The set of $(n \times n)$ matrices with real elements forms a commutative group under matrix addition

Definitions

Definition 4

The order or cardinality of a group is the number of elements in the group.

Definition 5
If the order or a group is finite, the group is a finite group. Otherwise, it is an infinite group.

Finite groups using modulo arithmetic

- In ECC, we are concerned with finite groups.

■ Construction of finite groups using modulo arithmetic on integers:

- The result of addition modulo m of $a, b \in G$ is the remainder, c, of $a+b$ divided by m, where $0 \leq c \leq m-1$:

$$
a+b=k \cdot m+c,
$$

where k is the largest integer such that

$$
k \cdot m<(a+b) .
$$

- Modulo addition can be expressed in several ways. We will start with a more-descriptive form than in the text:

$$
a+b \equiv c \bmod m
$$

Construction of Groups Using Modulo Addition

■ Define G by $G=\{0,1,2, \ldots, m-1\}$
■ Define $c=a \boxplus b$ by $a+b \equiv c \bmod m$

- Then (G, \boxplus) is a group:
- $a \boxplus b$ is an integer between 0 and $m-1$, so G is closed under \boxplus
- \boxplus is associative
- Identity element under \boxplus is zero $a \boxplus 0=a, a \boxplus b=a \Rightarrow b=k m$, but $b=k m \Rightarrow b=0$ (identity is unique)
- For a in $G, m-a$ is also in G. Let $c=a \boxplus m-a$. Then

$$
\begin{aligned}
a+m-a & \equiv c \bmod m \\
m & \equiv c \bmod m \\
\Rightarrow m & =k \cdot m+c \Rightarrow c=0
\end{aligned}
$$

(Inverses are in G.)

- This defines an additive group over the integers mod m

Construction of Groups Using Modulo Multiplication

■ Suppose we select a prime number p, and let $G=\{1,2, \ldots, p-1\}$.
■ Define \square by $c=a \square b$ if $a \cdot b \equiv c \bmod p$.
$\square(G, \square)$ is then a group of order $p-1$
Claim: (G, \square) is a group of order $p-1$
■ Associativity

- Identity: clearly a $\downarrow=a$

■ Inverse: Let $i \in G$ be an element for which we want to find an inverse by Euclid's Theorem, $\exists a, b$ such that

$$
a \cdot i+b \cdot p=1
$$

and a, p are relatively prime. We then have $a \cdot i=-b \cdot p+1$. What next?

Subgroup

Definition 6

Subgroup: If H is a nonempty subset of G and H is closed under $*$ and satisfies all the conditions of a group, then H is a subgroup of G.

Example: G : rational numbers under real addition. H : integers under real addition

Theorem 3
Let G be a group under binary operation *. Let H be a non-empty subset of G. Then H is a subgroup of G if the following conditions hold:

■ H is closed under *
■ For any element a in H, the inverse of a is also in H.

Proof?

Coset

Definition 7

Let H be a subgroup of G with binary operation *. Let a be an element of G. Then the set of elements $a * H \triangleq\{a * h: h \in H\}$ is called a left coset of H; the set of elements $H * a \triangleq\{h * a: h \in H\}$ is called a right coset of H.

For a commutative group, left and right cosets are identical. Hereafter, we just call them cosets.

Theorem 4
Let H be a subgroup of a group G under binary operation *. No two elements in a coset of H are identical.

Theorem 5

Let H be a subgroup of a group G under binary operation *. No two elements in two different cosets of H are identical.

Definitions: Rings

Definition 8
A ring is a collection of elements R with two binary operations, usually denoted " + " and "." with the following properties:
(1) $(R,+)$ is a commutative group. The additive identity is labeled " 0 ".
(2) is Associative: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
(3) Distributes over + .

$$
a \cdot(b+c)=(a \cdot b)+(a \cdot c) .
$$

Definitions: Rings

Definition 9
A ring is a commutative ring if \cdot is commutative: $a \cdot b=b \cdot a$.

Definition 10
A ring is a ring with identity if . has an identity, which is labeled " 1 ".

Outline

(1) Groups and Rings

(2) Fields

Definitions: Fields

Definition 11
A field is a commutative ring with identity in which every element has an inverse under .

- Essentially, a field is:
- a set of elements F
- with two binary operations + (addition) and • (multiplication).
- "+", ".", and inverses can be used to do addition, subtraction, multiplication, and division without leaving the set.

Definitions: Fields

Definition 12

Formal definition: A field consists of a set F and two binary operations + and that satisfy the following properties:
(1) F forms a commutative group under addition (+). The additive identity is labeled " 0 ".
(2) $F-\{0\}$ forms a commutative group under multiplication (\cdot). The multiplicative identity is labeled " 1 ".
(3) The operation "." distributes over + :

$$
a \cdot(b+c)=(a \cdot b)+(a \cdot c) .
$$

Fields: Examples

Examples of Fields

- The rational numbers
- The integers do not form a field because they do not form a group under ".". (There are no multiplicative inverses.)
- The real numbers
- The complex numbers

Observe that they are all infinite fields.

Properties of Fields

■ Property I. For every element a in a field, $a \cdot 0=0 \cdot a=0$. Proof?

■ Property II. For any two nonzero elements a and b in the field, $a \cdot b \neq 0$.
Proof: The nonzero elements are closed under \cdot.
■ Property III. If $a \cdot b=0$ and $a \neq 0$, then $b=0$. Proof: From Property II.

■ Property IV. For $a \neq 0, a \cdot b=a \cdot c$ implies $b=c$.
Proof: Multiply each side by a^{-1}.

Finite Fields

■ Finite fields are more commonly known as Galois Fields after their discoverer

- A Galois field with p members is denoted GF(p)

■ Every field must have at least 2 elements:

- the additive identity ' 0 ', and
- the multiplicative identity ' 1 '

Binary Fields

■ There exists a finite field with 2 elements: the binary field, denoted GF(2)

- $F=\{0,1\}$
- + defined as modulo-2 addition

+	0	1
0	0	1
1	1	0

- defined as modulo-2 multiplication

\cdot	0	1
0	0	0
1	0	1

- It is easy to verify that - distributes of + by trying each of the 8 possible combinations

$G F(p)$

Given a prime number p, the integers $\{0,1,2, \ldots, p-1\}$ form a field under modulo p addition and multiplication.

■ $\{0,1, \ldots, p-1\}$ is a commutative group under $\bmod p$ addition
■ $\{1, \ldots, p-1\}$ is a commutative group under $\bmod p$ multiplication

- modulo multiplication distributes over modulo addition

Examples of $G F(3)$

- The next smallest group after GF(2) is GF(3), $F=\{0,1,2\}$
- + defined by

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

- defined by

\cdot	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Constructions of Finite Fields

■ Modulo arithmetic can be used to construct fields of size p, where p is prime.

- Modulo arithmetic cannot be used to construct fields of size p if p is not prime.

■ Finite fields GF(q) do not exist for all q.

- However, finite fields $\operatorname{GF}(q)$ do exist if $q=p^{m}$, where p is prime and $m>1$.
- $\mathrm{GF}\left(p^{m}\right)$ is called an extension field of $\operatorname{GF}(p)$ because it is constructed as a vector space over $\operatorname{GF}(q)$.

Subtraction and Division in Fields

$■$ Subtraction over the field: to subtract b from a, find the additive inverse of b (call it $-b$) and add it to a :

$$
a-b=a+(-b) .
$$

- Division over the field can be defined in the same way: to divide a by b, first find the multiplicative inverse of b (call it $b-1$), and multiply it by a :

$$
a / b=a \cdot b^{-1}
$$

Outline

(1) Groups and Rings

(2) Fields

(3) Vector Spaces

Definition: Vector Space

Definition 13

A vector space consists of:
■ V, a set of elements called vectors;
■ F, a field of elements called scalars;
■ +, a binary operator on $V \ni \forall \underline{v}_{1}, \underline{v}_{2} \in V, \underline{v}_{1}+\underline{v}_{2}=\underline{v} \in V$, called vector addition;
■ •, a binary operator on F and V
if $a \in F, \underline{v} \in V, a \cdot \underline{v}=\underline{w} \in V$ called scalar multiplication;
that satisfy the five properties below.

Properties of Vector Spaces

(i) V is a commutative group under +
(ii) $\forall a \in F, \underline{v} \in V, a \cdot \underline{v} \in V$
(closed under scalar multiplication)
(iii) $\forall \underline{u}, \underline{v} \in V$ and $a, b \in F$

$$
\begin{aligned}
a \cdot(\underline{u}+\underline{v}) & =a \cdot \underline{u}+a \cdot \underline{v} \\
(a+b) \cdot \underline{v} & =a \cdot \underline{v}+b \cdot \underline{v}
\end{aligned}
$$

(• distributes over +)
(iv) $\forall \underline{v} \in V, a, b \in F$,

$$
(a \cdot b) \cdot \underline{v}=a \cdot(b \cdot \underline{v})
$$

(. is associative)
(v) The multiplier identity $1 \in F$ is the identity for scalar multiplication

$$
1 \cdot \underline{v}=\underline{v} .
$$

Properties of Vector Spaces

The additive identity of V is denoted by $\underline{0}$. Additional Properties:

$$
\begin{aligned}
& \text { I) } 0 \cdot \underline{v}=0 \forall v \in V \\
& \text { II) } c \cdot \underline{0}=\underline{0} \\
& \text { III) }(-c) \cdot \underline{v}=c \cdot(-\underline{v})=-(c \cdot \underline{v})
\end{aligned}
$$

Common Vector Spaces

■ n-tuples $(\underline{v})=\left(v_{0}, v_{1}, \ldots, v_{n-11}\right)$

- each $v_{i} \in F$

■ + defined by $\underline{u}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ then

$$
u+v=\left(u_{0}+v_{0}, u_{1}+v_{1}, \ldots, u_{n-1}+v_{n-11}\right)
$$

■ • defined by $a \in F, a \cdot \underline{v}=\left(a v_{0}, a v_{1}, \ldots, a v_{n-1}\right)$
We will focus on $F=G F(2)$ or $G F\left(2^{m}\right)$.

Linear Combinations

Definition 14
Let $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{n} \in V$ and $a_{1}, a_{2}, \ldots, a_{n} \in F$. Then
$a_{1} \underline{v}_{1}+a_{2} \underline{v}_{2}+\cdots+a_{n} \underline{v}_{n} \in V$ is a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$.

Definition 15
If $G=\left\{\underline{v}_{0}, \underline{v}_{1}, \cdots, \underline{v}_{n}\right\}$ is a collection of vectors \ni the linear combinations of vectors in G is all vectors in a vector space V, then G is a spanning set for V

Example

Let V_{n} denote the vector space of n-tuples whose elements $\in G F(2)$

$$
V_{4}=\begin{array}{cccc}
(0000) & (0001) & (0010) & (0011) \\
(0100) & (0101) & (0110) & (0111) \\
(1000) & (1001) & (1010) & (1011) \\
(1100) & (1101) & (1110) & (1111)
\end{array}
$$

Then $G=\{(1000),(0110),(1100),(1001),(0011)\}$ is a spanning set for $V(G$ spans $V)$.
Note: The vectors in G are linearly dependent.

Linearly Independent

Definition 16

■ A set of vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}$ in a vector space V over a field F are linearly dependent if $\exists a_{1}, a_{2}, \ldots, a_{k} \in F$ $\ni a_{1} \underline{v}_{1}+a_{2} \underline{v}_{2}+\cdots+a_{k} \underline{v}_{k}=\underline{0}$, and at least one $a_{i} \neq 0$.

- Otherwise $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}$ are linearly dependent.

Ex:(cont) The vectors in G are linearly dependent because (for example)

$$
(0110)+(1100)+(0011)=(1001)
$$

(i.e., the sum of these four is $\underline{0}$) Vectors are linearly dependent if one can be expressed as the linear combination of the others. We can delete (1001) from G and still have a spanning set for V. However, we cannot delete any more vectors and still have a spanning set for V.

Definitions

Definition 17

A spanning set for V is a basis for V if it has minimum cardinality.
Example: Bases for V_{4} Clearly $\{(1000),(0110),(1100),(0011)\}$ is a basis for V_{4}.
A common basis for V_{n} is the canonical basis.
Example: Canonical basis for $V_{4}:\{(1000),(0100),(0010),(0001)\}$
Definition 18
The dimension of a vector space V, written $\operatorname{dim}(V)$, is the cardinality of a basis for V.

Definitions

Theorem 6

Let $\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$ be a basis for a vector space V. For every $\underline{v} \in V$, there is a unique representation

$$
\begin{equation*}
\underline{v}=a_{0} \underline{v}_{0}+a_{1} \underline{v}_{1}+\cdots+a_{k-1} \underline{v}_{k-1} . \tag{1}
\end{equation*}
$$

Definitions

Definition 19
If V is a vector space over a field F and $S \subset V$ is also a vector space over F, then S is a subspace of V.

Theorem 7
(Theorem 2.18) Let $S \subset V, S \neq \emptyset$ then S is a subspace of V if:
i) $\forall \underline{u}, \underline{v} \in S, \underline{u}+\underline{v} \in S$.
ii) $\forall a \in F, \underline{u} \in S, a \cdot \underline{u} \in S$

Theorem 8
(Theorem 2.19) Let $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k} \in V$ over F. The set of all linear combinations of $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k}$ forms a vector subspace of V.

Inner Product

Definition 20
Let $\underline{u}, \underline{v} \in V$, a vector space of n-tuples over a field F. Then the inner (or dot) product of \underline{u} and \underline{v} is

$$
\begin{aligned}
\underline{u} \cdot \underline{v} & =u_{0} v_{0}+u_{1} v_{1}+\cdots+u_{n-1} v_{n-1} \\
& =\sum_{i=0}^{n-1} u_{i} v_{i}
\end{aligned}
$$

which is a scalar.

Properties of Inner Product

(i) Commutativity $\Rightarrow \underline{u} \cdot \underline{v}=\underline{v} \cdot \underline{u}$
(ii) Associativity $\Rightarrow(a \cdot \underline{u}) \cdot \underline{v}=a \cdot(\underline{u} \cdot \underline{v})$
(iii) Distributivity over $+\Rightarrow \underline{u} \cdot(\underline{v}+\underline{w})=\underline{u} \cdot \underline{v}+\underline{u} \cdot \underline{w}$

Definition 21
If $\underline{u}, \underline{v} \in V$ (a vector space), and $\underline{u} \cdot \underline{v}=0$, then \underline{u} and \underline{v} are orthogonal.

Null Space

Definition 22

- Let S be a $\operatorname{dim} k$ subspace of V_{n}. Let S_{d} be all vectors in $V_{n} \ni$ if $\underline{u} \in S, \underline{v} \in S_{d}, \underline{u} \cdot \underline{v}=0$.
■ Then S_{d} is also a subspace of V_{n}, and S_{d} is called the null space or dual space of S.

Null Space

Proof that S_{d} is a subspace of $V_{n}: S_{d}$ is nonempty, since $\underline{0} \cdot \underline{u}=0, \forall \underline{u} \in V_{n} \Rightarrow \underline{0} \in S_{d}$. Suppose $\underline{v} \in S_{d}, \underline{w} \in S_{d}$. Then $\underline{v} \cdot \underline{u}=0$ and $\underline{w} \cdot \underline{u}=0 \forall \underline{u} \in S$

$$
\begin{aligned}
& \text { (i) }(v+w) \cdot u=(v \cdot u)+(w \cdot u)=0 \\
& \Rightarrow \underline{v}+\underline{w} \in S_{d}
\end{aligned}
$$

(ii) For any $a \in F,(a \cdot \underline{w}) \cdot \underline{u}=a \cdot(\underline{w} \cdot \underline{u})=a \cdot 0=0$
$\Rightarrow a \cdot \underline{w} \in S_{d}$
(i) \& (ii) \Rightarrow any linear combination of vectors in S_{d} is in S_{d}. $\Rightarrow S_{d}$ is a subspace of V.

Null Space

Theorem 9
The dimension theorem: Let S be a finite dimensional vector subspace of V and let S_{d} be the corresponding dual space. Then

$$
\operatorname{dim}(S)+\operatorname{dim}\left(S_{d}\right)=\operatorname{dim}(V)
$$

Matrices over GF(Q)/GF(2)

$k \times n$ matrix over $G F(q)$

- k rows
- n columns
- $g_{i, j} \in G F(q)$

$$
\underline{G}=\left[\begin{array}{cccc}
g_{00} & g_{01} & \cdots & g_{0, n-1} \\
g_{10} & g_{11} & \cdots & g_{1, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1, n-1}
\end{array}\right]
$$

\underline{G} is also abbreviated as $\left[g_{i j}\right]$.

Matrices over GF(Q)/GF(2)

Let \underline{g}_{i} denotes the vector of the $i^{\text {th }}$ row

$$
g_{i}=\left[\begin{array}{llll}
g_{i 0} & g_{i 1} & \cdots & g_{i, n-1} \tag{2}
\end{array}\right]
$$

Then,

$$
\underline{G}=\left[\begin{array}{c}
\underline{g}_{0} \tag{3}\\
\underline{g}_{1} \\
\vdots \\
\underline{g}_{k-1}
\end{array}\right]
$$

Matrices over GF(Q)/GF(2)

If the k rows $\underline{g}_{0}, \ldots, \underline{g}_{k-1}$ are linearly independent, then:

- There are q^{k} linear combination of the \underline{g}_{i}
- These q^{k} vectors form a k-dimensional vector space over the n-tuples over $G F(q)$, called the row space of \underline{G}.

Matrices over GF(Q)/GF(2)

Any matrix G may be transformed by elementary row operations (swapping rows, adding rows) into a matrix G^{\prime} that has the same row space.
If S is the row space of $\underline{G}_{n \times n}$, then the null space S_{d} has $\operatorname{dim} n-k$. Let $\underline{h}_{0}, \underline{h}_{1}, \ldots, \underline{h}_{n-k-1}$ denotes $n-k$ linearly independent vectors in S_{d} and

$$
\underline{H}=\left[\begin{array}{c}
\underline{h}_{0} \tag{4}\\
\underline{h}_{1} \\
\vdots \\
\underline{h}_{n-k-1}
\end{array}\right]
$$

Then the row space of \underline{H} is S_{d}.
The row space of \underline{G} is the null space of \underline{H}, and vice versa.

More Matrix Operations

Matrix addition and multiplication is as expected:
Addition is componentwise for 2 matrices of the same size:

$$
\begin{equation*}
\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right] \tag{5}
\end{equation*}
$$

Multiplication of a $k \times n$ matrix A by an $n \times l$ matrix B yields a $k \times l$ matrix C.

$$
\begin{equation*}
c_{i j}=\underline{a}_{i} \cdot \underline{b}_{j} \tag{6}
\end{equation*}
$$

where
\underline{a}_{i} is the $i^{\text {th }}$ row of A
\underline{b}_{j} is the $j^{\text {th }}$ column of B.

$$
\begin{equation*}
c_{i j}=\sum_{t=0}^{n-1} a_{i t} b_{t j} \tag{7}
\end{equation*}
$$

More Matrix Operations

$\underline{G}^{T}=$ transpose of $\underline{G}=n \times k$ matrix whose columns are the rows of \underline{G}. $\underline{I}_{k}=k \times k$ Identity matrix $= \begin{cases}1 & \text { in }(i, i) \text { positions } \\ 0 & \text { elsewhere }\end{cases}$

Example:

$$
\underline{I}_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Submatrix of $\underline{G}=$ matrix created by removing rows and/or columns from \underline{G}.

