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Administration

Hours and Location

I Lectures: MW 4:00pm – 5:15pm
I Location: P-148
I Office hours: MW 2:00pm – 3:00pm or by email appointments

Course webpage:
http://engineering.sdsu.edu/˜nguyen/EE653/index.html

Instructor:
I Name: Dr. Duy Nguyen
I Office: E-408
I Phone: 619-594-2430
I Email: duy.nguyen@sdsu.edu
I Webpage: http://engineering.sdsu.edu/˜nguyen

Teaching Assistant: N/A
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Syllabus

Prerequisite
I EE 558 - Digital Communications
I Knowledge of MATLAB programming

References
1. Shu Lin and Daniel J. Costello, Jr., Error Control Coding: Fundamentals

and Applications, 2nd Ed., Prentice Hall, 2004.
2. B. Sklar, Digital Communications: Fundamentals and Applications, 2nd

Ed., Prentice Hall, 2001.

3. J. Proakis, Digital Communications, 4th Ed., McGraw-Hill, 2000.
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Assessments

Assessments: 20% Homework, 15% Quiz, 15% Midterm Exam, 20%
Project, and 30% Final Exam (Open-Book)

Homework assignments: Bi-weekly, Total: 5. Late submission:
maximum 1 day, 20% score deducted

Research Project: In-depth study or original research topic
I Project Proposal: 1 page (%5)
I Project Report: 5-7 pages (double-column) (%10)
I Presentation: 15 minutes - End of semester (%5)

Midterm: Monday, Mar 06

Final: Monday, May 08 at 15:30 – 17:30

Grades:
90–100 A/–
75–89 B/±
60–74 C/±
50–59 D/+
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Schedule

Week Day Task Week Day Task

1 M 9 M
Jan 16 W First day of class Mar 13 W

2 M 10 M HW4 out, HW3 due
Jan 23 W Mar 20 W

3 M HW1 out BREAK M Spring break
Jan 30 W Mar 27 W Spring break

4 M 11 M Quiz 2
Feb 6 W Apr 3 W

5 M HW2 out, HW1 due 12 M HW5 out, HW4 due
Feb 13 W Apr 10 W

6 M Quiz 1 13 M Quiz 3
Feb 20 W Apr 17 W

7 M HW3 out, HW2 due 14 M HW5 due
Feb 27 W Apr 24 W

8 M Midterm Exam 15 M Project presentation
Mar 6 W Project proposal due May 1 W Final Report due
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Topics to Cover

Mathematical background
I Related background on Abstract Algebra

Linear block codes
I Hamming codes
I Reed-Muller codes

Cyclic codes
I Cyclic codes
I BCH codes
I Reed-Solomon codes

Convolutional codes

Advanced Topics: Turbo codes, Low-Density Parity Check (LDPC)
codes, trellis coded modulation (TCM), bit-interleaved coded
modulation (BICM)
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What is Coding for?

Noise

Source Encoder Channel Decoder Destination

Source Coding
I The process of compressing the data using fewer bits to remove

redundancy

I Shannon’s source coding theorem establishes the limits to possible
data compression: entropy

Channel Coding or Error Control Coding
I The process of adding redundancy to information data to better

withstand the effects of channel impairments

I Shannon-Hartley’s capacity theorem establishes the limits for data
transmission with an arbitrary small error probability
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What is Source Coding?

Forming efficient descriptions of information sources

Reduction in memory to store or bandwidth resources to transport
sample realizations of the source data

Discrete sources: entropy to define the average self-information for
the symbols in an alphabet

H(X) = −
N∑
j=1

pj log2(pj)

Maximum entropy with equal probability 1/N for all symbols

0 ≤ H(X) ≤ log2(N)

Compress source signals to the entropy limit

Examples: entropy of binary sources
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What is Error Control Coding?

Coding for reliable digital storage and transmission

“The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point.” (Claude Shannon 1948)

Proper encoding can reduce errors to any desired level as long as
the information rate is less than the capacity of the channel

What is Error Control Coding?
I Adding redundancy for error detection and/or correction

I Automatic Repeat reQuest (ARQ): error detection only - easy and
fast with parity check bits. If there is an error, retransmission is
necessary (ACK vs NAK)

I Forward ECC: both error detection and correction - more complicated
encoding and decoding techniques

Focus of this course: channel encoding and decoding!
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Communication Channel

Physical medium: used to send the signal from TX to RX
Describe the transition probability from input to output

n

x PY |X(y|x) y

Noiseless binary channel: input is reproduced exactly at output

1 1

0 0

Binary symmetric channel: cross probability p

1 1

1− p

1− p

p

p

0 0
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Channel Capacity

Example of AWGN channel: y = x+ n, n ∼ N (0, N), E
[
|x|2
]
= S

I Mutual information

I(x; y) = H(y)−H(y|x)
I Capacity of a channel

C = max
p(xi)

I(x; y)

I Gaussian distribution has the highest entropy

H(y|x) = H(n) =
1

2
log
[
2πeN

]
I H(y) is maximum if y is Gaussian → x is also Gaussian

H(y) =
1

2
log
[
2πe(S +N)

]
I Shannon-Hartley theorem on channel capacity with Gaussian input

C =
1

2
log

(
1 +

S

N

)
nats/s/Hz
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Example 1: Repetition Code

Repetition code: Repeat each bit (n− 1) times

Code rate 1/n, denoted as Rn

Encoding rule for R5 code:
I 0→ 00000
I 1→ 11111

Decoding rule:
I Majority decoding rule: choose bit that occurs more frequently

Example with R5 code: We have information bits 10. After
encoding, we have 1111100000. If 0110111000 is received (some
bits are in error):

I We first decode 01101 to 1
I We then decode 11000 to 0
I Decoded bits: 10
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How Good Is Repetition Code?

Without repetition code, assume the probability of error is p

With Rn code, the probability of error is:

PE =

n∑
i=(n+1)/2

(
n

i

)
pi(1− p)n−i

Repetition is the simplest code: Is it a good code?

With p = 10−1 and R3 code, overall error PE is 2× 10−2

Not good if n is small. If n is large: Overhead burden
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How Good is Repetition Code?

s

✲

encoder t channel

f = 10%

✲

r decoder

✲

ŝ

Source: David J. C. MacKay, Information Theory, Inference, and Learning Algorithms.
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How Good is Repetition Code?

pb

0.1

0.01

1e-05

1e-10

1e-15
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Rate

more useful codes

R5
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R61

R1

Source: David J. C. MacKay, Information Theory, Inference, and Learning Algorithms.
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Example 2: Cyclic Redundancy Check (CRC)

Check values are added to information. If the check values do not
match, re-transmission is requested

CRC: Used for error detection, not correction

Simple to implement in binary hardware, easy to analyze
mathematically, and particularly good at detecting common errors

Commonly used in digital networks and storage devices; Ethernet
and many other standards

CRC is a special case of Cyclic Codes

In this course, most of the time, the focus is on Forward Error
Correction (FEC): a one-way system employing error-correcting
codes that automatically correct errors detected at the receiver
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What is a “Good” Code?

For a bandwidth W , power P , Gaussian noise power spectral
density N0, there exists a coding scheme that drives the probability
of error arbitrarily close to 0, as long as the transmission rate R is
smaller than the Shannon capacity limit C:

C =W log2

(
1 +

P

WN0

)
(bits/s)

Consider the normalized channel capacity (spectral efficiency)
η = C/W (bits/s/Hz) with P = CEb, where Eb: energy per bit:

η =
C

W
= log2

(
1 +

C

W

Eb
N0

)
Then we have

Eb
N0

=
2η − 1

η

[1] Claude E. Shannon, A Mathematical Theory of Communication. Bell System
Technical Journal, 27, 379–423 & 623–656, 1948.
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Capacity Approaching Coding Schemes

If R > C: no way for a reliable transmission

If R ≤ C: the results of the theorem were based on the idea of
random coding

I The theorem was proved using random coding bound

I Block length must goes to infinity

No explicit/practical coding scheme was provided

A holy grail for communication engineers and coding theorist
I Finding a scheme with performance close to what was promised by

Shannon: Capacity-approaching schemes

I Complexity in implementation of those schemes

High performing coding schemes only found very recently!
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A Brief History of Error Control Coding

Linear block codes: Hamming code (1950), Reed-Muller code
(1954)

Cyclic codes: BCH code (1960), Reed-Solomon (1960)

LDPC, 1963

TCM, 1976 & 1982

Turbo codes, 1993

BICM, 1996

The rediscovery of LDPC, 1996

Fountain codes: LT code (2003), Raptor code (2006)

Polar code, 2009
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Digital Communication System

Information

 bits

Decoded

 bits

Linear schemes: BPSK, 

QPSK, QAM

- Algebraic block codes

- Convolutional codes

- Turbo and LDPC codes

- Concatenated codes

Coded bits

Signals
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Digital Communication System

Information u = 1001; Using repetition code R3, we have coded
bits v = 111000000111

Now we can use BPSK modulation scheme:

Bit 0: −
√
Es

√
2

Tb
cos
(
2πfct

)
Bit 1: +

√
Es

√
2

Tb
cos
(
2πfct

)
Baseband model r[m] = x[m] + w[m], with
x[m] = ±

√
Es;w[m] ∼ N (0, N0/2): AWGN

What can we do with r[m]? Hard-decision decoding and
soft-decision decoding

Review of Digital Communications 25



Digital Communication System

If hard-decision decoding, the uncoded bit error probability is

p = Q
(√

2Es/N0

)
. We will then have a binary symmetric channel

(BSC) with transition probability p

Here, Q(x) is the complementary error function, defined as

Q(x) = 1

2π

∫ ∞
x

e−y
2/2dy

Given p, we should be able to calculate the bit error probability of
our information sequence

Soft-decision decoding: offers significant performance. We will talk
later on about it
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Maximum Likelihood Decoding

Information

 bits

Decoded

 bits

Linear schemes: BPSK, 

QPSK, QAM

- Algebraic block codes

- Convolutional codes

- Turbo and LDPC codes

- Concatenated codes

Coded bits

Signals

Information u; coded information or coded bits v

After modulation, we have transmitted signals x. For the moment,
let’s assume we use BPSK so that length of v and x are the same

At the receiver, we receive r. From r, the decoder needs to produce
an estimate û

Equivalently, since there is one-to-one correspondence between
information sequence u and coded sequence v, the decoder can
produce an estimate v̂
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Maximum Likelihood Decoding

Clearly, û = u if and only if v̂ = v.

A decoding rule is a strategy for choosing an estimated of v̂ for each
possible received sequence r, e.g., the hard decision decoding rule.

Given that r is received, the conditional error probability of the
decoder is defined as:

P (E|r) , P (v̂ 6= v|r)

The error probability of the decoder is then given by:

P (E) =
∑
r

P (E|r)P (r)
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Maximum Likelihood Decoding

P (r) is independent of decoding rule, since r is produced prior to
decoding. Hence, an optimal decoding rule, that is, one that
minimize P (E) must minimize P (E|r) = P (v̂ 6= v|r) for all r.

Now, note that minimizing P (v̂ 6= v|r) is equivalent to maximizing
P (v̂ = v|r). Therefore, an optimal decoding rule is to choose a
codeword v that maximizes

P (v|r) = P (r|v)P (v)
P (r)

If we assume all information sequences u are equally likely, it would
be the same for all coded sequences v. As such, P (v are the same
for all v. It means that for an optimal decoding rule, we need to
find a codeword v to maximize P (r|v): Maximum Likelihood
Decoding (MLD) rule.
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MLD with DMC and BSC

If we assume channel is discrete and memoryless channel (DMC),
i.e., each received symbol ri depends only on the corresponding
transmitted symbol xi (or vi), we have P (r|v) =

∏
i P (ri|vi)

So MLD is equivalent to maximize the log-likelihood function:

logP (r|v) =
∑
i

logP (ri|vi)

i.e, we need to choose v to maximize the above sum

Now, we consider a special case of BSC channel, i.e., r is a binary
sequence that may differ from transmitted sequence v in some
positions owning to the channel noise. For this BSC, assume when
ri 6= vi, P (ri|vi) = p. Of course, when ri = vi, P (ri|vi) = 1− p
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MLD with DMC and BSC

Now, let d(r,v) be the distance between r and v, that is, the
number of positions in which r and v differ. Since they are binary
sequences, this distance is called Hamming distance.

Assume a block length of n, we then have:∑
i

logP (ri|vi) = d(r,v) log p+ [n− d(r,v)] log(1− p)

= d(r,v) log
p

1− p
+ n log(1− p)

So what is MLD rule now?
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