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Introduction

The main objective of a communication system is the transfer of
information over a channel.

Message signal is best modeled by a random signal

Two types of imperfections in a communication channel:

I Deterministic imperfection, such as linear and nonlinear distortions,
inter-symbol interference, etc.

I Nondeterministic imperfection, such as addition of noise,
interference, multipath fading, etc.

We are concerned with the methods used to describe and
characterize a random signal, generally referred to as a random
process (also commonly called stochastic process).

In essence, a random process is a random variable evolving in time.
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Sample Space and Probability

Random experiment: its outcome, for some reason, cannot be
predicted with certainty.

Examples: throwing a die, flipping a coin and drawing a card from a
deck.

Sample space: the set of all possible outcomes, denoted by Ω.
Outcomes are denoted by ω’s and each ω lies in Ω, i.e., ω ∈ Ω.

A sample space can be discrete or continuous.

Events are subsets of the sample space for which measures of their
occurrences, called probabilities, can be defined or determined.
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Example of Throwing a Fair Die

Ω

Various events can be defined: “the outcome is even number of dots”,
“the outcome is smaller than 4 dots”, “the outcome is more than 3
dots”, etc.
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Three Axioms of Probability

For a discrete sample space Ω, define a probability measure P on Ω as a
set function that assigns nonnegative values to all events, denoted by E,
in Ω such that the following conditions are satisfied

Axiom 1: 0 ≤ P (E) ≤ 1 for all E ∈ Ω (on a % scale probability
ranges from 0 to 100%. Despite popular sports lore, it is impossible
to give more than 100%).

Axiom 2: P (Ω) = 1 (when an experiment is conducted there has to
be an outcome).

Axiom 3: For mutually exclusive events1 E1, E2, E3,. . . we have
P (
⋃∞
i=1Ei) =

∑∞
i=1 P (Ei).

1The events E1, E2, E3,. . . are mutually exclusive if Ei ∩ Ej = � for all i 6= j,
where � is the null set.
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Important Properties of the Probability Measure

1. P (Ec) = 1− P (E), where Ec denotes the complement of E. This
property implies that P (Ec) + P (E) = 1, i.e., something has to
happen.

2. P (�) = 0 (again, something has to happen).

3. P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2). Note that if two
events E1 and E2 are mutually exclusive then
P (E1 ∪ E2) = P (E1) + P (E2), otherwise the nonzero common
probability P (E1 ∩ E2) needs to be subtracted off.

4. If E1 ⊆ E2 then P (E1) ≤ P (E2). This says that if event E1 is
contained in E2 then occurrence of E1 means E2 has occurred but
the converse is not true.
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Conditional Probability

We observe or are told that event E1 has occurred but are actually
interested in event E2: Knowledge that of E1 has occurred changes
the probability of E2 occurring.

If it was P (E2) before, it now becomes P (E2|E1), the probability of
E2 occurring given that event E1 has occurred.

This conditional probability is given by

P (E2|E1) =

{
P (E2∩E1)
P (E1)

, if P (E1) 6= 0

0, otherwise
.

If P (E2|E1) = P (E2), or P (E2 ∩ E1) = P (E1)P (E2), then E1 and
E2 are said to be statistically independent.

Bayes’ rule

P (E2|E1) =
P (E1|E2)P (E2)

P (E1)
,
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Total Probability Theorem

The events {Ei}ni=1 partition the sample space Ω if:

(i)
n⋃
i=1

Ei = Ω (1)

(ii) Ei ∩ Ej = � for all 1 ≤ i, j ≤ n and i 6= j (2)

If for an event A we have the conditional probabilities
{P (A|Ei)}ni=1, P (A) can be obtained as

P (A) =

n∑
i=1

P (Ei)P (A|Ei).

Bayes’ rule:

P (Ei|A) =
P (A|Ei)P (Ei)

P (A)
=

P (A|Ei)P (Ei)∑n
j=1 P (A|Ej)P (Ej)

.
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Random Variables
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A random variable is a mapping from the sample space Ω to the set
of real numbers.

We shall denote random variables by boldface, i.e., x, y, etc., while
individual or specific values of the mapping x are denoted by x(ω).
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Random Variable in the Example of Throwing a Fair Die

R

Ω

52 3 41 6

There could be many other random variables defined to describe the
outcome of this random experiment!

Probability and Random Variables 12



Cumulative Distribution Function (cdf)

cdf gives a complete description of the random variable. It is
defined as:

Fx(x) = P (ω ∈ Ω : x(ω) ≤ x) = P (x ≤ x).

The cdf has the following properties:

1. 0 ≤ Fx(x) ≤ 1

2. Fx(x) is nondecreasing: Fx(x1) ≤ Fx(x2) if x1 ≤ x2
3. Fx(−∞) = 0 and Fx(+∞) = 1

4. P (a < x ≤ b) = Fx(b)− Fx(a).
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Typical Plots of cdf I

A random variable can be discrete, continuous or mixed.
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Typical Plots of cdf II
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Probability Density Function (pdf)

The pdf is defined as the derivative of the cdf:

fx(x) =
dFx(x)

dx
.

It follows that:

P (x1 ≤ x ≤ x2) = P (x ≤ x2)− P (x ≤ x1)

= Fx(x2)− Fx(x1) =

∫ x2

x1

fx(x)dx.

Basic properties of pdf:
1. fx(x) ≥ 0.
2.
∫∞
−∞ fx(x)dx = 1.

3. In general, P (x ∈ A) =
∫
A fx(x)dx.

For discrete random variables, it is more common to define the
probability mass function (pmf): pi = P (x = xi).

Note that, for all i, one has pi ≥ 0 and
∑

i pi = 1.
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Bernoulli Random Variable
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A discrete random variable that takes two values 1 and 0 with
probabilities p and 1− p.

Good model for a binary data source whose output is 1 or 0.

Can also be used to model the channel errors.
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Binomial Random Variable
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A discrete random variable that gives the number of 1’s in a
sequence of n independent Bernoulli trials.

fx(x) =

n∑
k=0

(
n

k

)
pk(1− p)n−kδ(x− k), where

(
n

k

)
=

n!

k!(n− k)!
.
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Uniform Random Variable
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A continuous random variable that takes values between a and b
with equal probabilities over intervals of equal length.

The phase of a received sinusoidal carrier is usually modeled as a
uniform random variable between 0 and 2π. Quantization error is
also typically modeled as uniform.
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Gaussian (or Normal) Random Variable
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A continuous random variable whose pdf is:

fx(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
,

µ and σ2 are parameters. Usually denoted as N (µ, σ2).

Most important and frequently encountered random variable in
communications.
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Functions of A Random Variable

The function y = g(x) is itself a random variable.

From the definition, the cdf of y can be written as

Fy(y) = P (ω ∈ Ω : g(x(ω)) ≤ y).

Assume that for all y, the equation g(x) = y has a countable
number of solutions and at each solution point, dg(x)/dx exists and
is nonzero. Then the pdf of y = g(x) is:

fy(y) =
∑
i

fx(xi)∣∣∣∣ dg(x)dx

∣∣∣
x=xi

∣∣∣∣ ,
where {xi} are the solutions of g(x) = y.

A linear function of a Gaussian random variable is itself a Gaussian
random variable.
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Expectation of Random Variables I

Statistical averages, or moments, play an important role in the
characterization of the random variable.

The expected value (also called the mean value, first moment) of
the random variable x is defined as

mx = E{x} ≡
∫ ∞
−∞

xfx(x)dx,

where E denotes the statistical expectation operator.

In general, the nth moment of x is defined as

E{xn} ≡
∫ ∞
−∞

xnfx(x)dx.
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Expectation of Random Variables II

For n = 2, E{x2} is known as the mean-squared value of the
random variable.

The nth central moment of the random variable x is:

E{y} = E{(x−mx)n} =

∫ ∞
−∞

(x−mx)nfx(x)dx.

When n = 2 the central moment is called the variance, commonly
denoted as σ2x:

σ2x = var(x) = E{(x−mx)2} =

∫ ∞
−∞

(x−mx)2fx(x)dx.

The variance provides a measure of the variable’s “randomness”.
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Expectation of Random Variables III

The mean and variance of a random variable give a partial
description of its pdf.

Relationship between the variance, the first and second moments:

σ2x = E{x2} − [E{x}]2 = E{x2} −m2
x.

An electrical engineering interpretation: The AC power equals total
power minus DC power.

The square-root of the variance is known as the standard deviation,
and can be interpreted as the root-mean-squared (RMS) value of
the AC component.
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The Gaussian Random Variable
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Laplacian fit

fx(x) =
1√

2πσ2
x

e
− (x−mx)2

2σ2x (Gaussian)
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Probability and Random Variables 26



Gaussian Distribution (Univariate)
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Range (±kσx) k = 1 k = 2 k = 3 k = 4

P (mx − kσx < x ≤ mx − kσx) 0.683 0.955 0.997 0.999
Error probability 10−3 10−4 10−6 10−8

Distance from the mean 3.09 3.72 4.75 5.61
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Multiple Random Variables I

Often encountered when dealing with combined experiments or
repeated trials of a single experiment.

Multiple random variables are basically multidimensional functions
defined on a sample space of a combined experiment.

Let x and y be the two random variables defined on the same
sample space Ω. The joint cumulative distribution function is
defined as

Fx,y(x, y) = P (x ≤ x,y ≤ y).

Similarly, the joint probability density function is:

fx,y(x, y) =
∂2Fx,y(x, y)

∂x∂y
.
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Multiple Random Variables II

When the joint pdf is integrated over one of the variables, one
obtains the pdf of other variable, called the marginal pdf:∫ ∞

−∞
fx,y(x, y)dx = fy(y),∫ ∞

−∞
fx,y(x, y)dy = fx(x).

Note that:∫ ∞
−∞

∫ ∞
−∞

fx,y(x, y)dxdy = F (∞,∞) = 1

Fx,y(−∞,−∞) = Fx,y(−∞, y) = Fx,y(x,−∞) = 0.
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Multiple Random Variables III

The conditional pdf of the random variable y, given that the value
of the random variable x is equal to x, is defined as

fy(y|x) =

{
fx,y(x,y)
fx(x)

, fx(x) 6= 0

0, otherwise
.

Two random variables x and y are statistically independent if and
only if

fy(y|x) = fy(y) or equivalently fx,y(x, y) = fx(x)fy(y).

The joint moment is defined as

E{xjyk} =

∫ ∞
−∞

∫ ∞
−∞

xjykfx,y(x, y)dxdy.
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Multiple Random Variables IV

The joint central moment is

E{(x−mx)j(y−my)k} =

∫ ∞
−∞

∫ ∞
−∞

(x−mx)j(y−my)kfx,y(x, y)dxdy

where mx = E{x} and my = E{y}.
The most important moments are

E{xy} ≡
∫ ∞
−∞

∫ ∞
−∞

xyfx,y(x, y)dxdy (correlation)

cov{x,y} ≡ E{(x−mx)(y −my)}
= E{xy} −mxmy (covariance).
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Multiple Random Variables V

Let σ2x and σ2y be the variance of x and y. The covariance
normalized w.r.t. σxσy is called the correlation coefficient:

ρx,y =
cov{x,y}
σxσy

.

ρx,y indicates the degree of linear dependence between two random
variables.

It can be shown that |ρx,y| ≤ 1.

ρx,y = ±1 implies an increasing/decreasing linear relationship.

If ρx,y = 0, x and y are said to be uncorrelated.

It is easy to verify that if x and y are independent, then ρx,y = 0:
Independence implies lack of correlation.

However, lack of correlation (no linear relationship) does not in
general imply statistical independence.
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Examples of Uncorrelated Dependent Random Variables

Example 1: Let x be a discrete random variable that takes on

{−1, 0, 1} with probabilities {14 ,
1
2 ,

1
4}, respectively. The random

variables y = x3 and z = x2 are uncorrelated but dependent.

Example 2: Let x be an uniformly random variable over [−1, 1].
Then the random variables y = x and z = x2 are uncorrelated but
dependent.

Example 3: Let x be a Gaussian random variable with zero mean
and unit variance (standard normal distribution). The random
variables y = x and z = |x| are uncorrelated but dependent.

Example 4: Let u and v be two random variables (discrete or
continuous) with the same probability density function. Then
x = u− v and y = u + v are uncorrelated dependent random
variables.
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Example 1

x ∈ {−1, 0, 1} with probabilities {1/4, 1/2, 1/4}
⇒ y = x3 ∈ {−1, 0, 1} with probabilities {1/4, 1/2, 1/4}
⇒ z = x2 ∈ {0, 1} with probabilities {1/2, 1/2}
my = (−1)14 + (0)12 + (1)14 = 0; mz = (0)12 + (1)12 = 1

2 .
The joint pmf (similar to pdf) of y and z:

0

1−

1

1

1

2
1

4

1

4

y

z
P (y = −1, z = 0) = 0

P (y = −1, z = 1) = P (x = −1) = 1/4

P (y = 0, z = 0) = P (x = 0) = 1/2

P (y = 0, z = 1) = 0

P (y = 1, z = 0) = 0

P (y = 1, z = 1) = P (x = 1) = 1/4
Therefore, E{yz} = (−1)(1)14 + (0)(0)12 + (1)(1)14 = 0
⇒ cov{y, z} = E{yz} −mymz = 0− (0)1/2 = 0!
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Jointly Gaussian Distribution (Bivariate)

fx,y(x, y) =
1

2πσxσy
√

1− ρ2x,y
exp

{
− 1

2(1− ρ2x,y)

×
[

(x−mx)2

σ2x
− 2ρx,y(x−mx)(y −my)

σxσy
+

(y −my)2

σ2y

]}
,

where mx, my, σx, σy are the means and variances.

ρx,y is indeed the correlation coefficient.

Marginal density is Gaussian: fx(x) ∼ N (mx, σ
2
x) and

fy(y) ∼ N (my, σ
2
y).

When ρx,y = 0 → fx,y(x, y) = fx(x)fy(y) → random variables x
and y are statistically independent.

Uncorrelatedness means that joint Gaussian random variables are
statistically independent. The converse is not true.

Weighted sum of two jointly Gaussian random variables is also
Gaussian.
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Joint pdf and Contours for σx = σy = 1 and ρx,y = 0
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Joint pdf and Contours for σx = σy = 1 and ρx,y = 0.3
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Joint pdf and Contours for σx = σy = 1 and ρx,y = 0.7
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Joint pdf and Contours for σx = σy = 1 and ρx,y = 0.95
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Multivariate Gaussian pdf

Define −→x = [x1,x2, . . . ,xn], a vector of the means
−→m = [m1,m2, . . . ,mn], and the n× n covariance matrix C with
Ci,j = cov(xi,xj) = E{(xi −mi)(xj −mj)}.
The random variables {xi}ni=1 are jointly Gaussian if:

fx1,x2,...,xn(x1, x2, . . . , xn) =
1√

(2π)n det(C)
×

exp

{
−1

2
(−→x −−→m)C−1(−→x −−→m)>

}
.

If C is diagonal (i.e., the random variables {xi}ni=1 are all
uncorrelated), the joint pdf is a product of the marginal pdfs:
Uncorrelatedness implies statistical independent for multiple
Gaussian random variables.
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Random Processes I
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Random Processes II

A mapping from a sample space to a set of time functions.

Ensemble: The set of possible time functions that one sees.

Denote this set by x(t), where the time functions x1(t, ω1),
x2(t, ω2), x3(t, ω3), . . . are specific members of the ensemble.

At any time instant, t = tk, we have random variable x(tk).

At any two time instants, say t1 and t2, we have two different
random variables x(t1) and x(t2).

Any relationship between them is described by the joint pdf
fx(t1),x(t2)(x1, x2; t1, t2).

A complete description of the random process is determined by the
joint pdf fx(t1),x(t2),...,x(tN )(x1, x2, . . . , xN ; t1, t2, . . . , tN ).

The most important joint pdfs are the first-order pdf fx(t)(x; t) and
the second-order pdf fx(t1)x(t2)(x1, x2; t1, t2).
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Examples of Random Processes I

(a)  Thermal noise

0 t

(b)  Uniform phase

t 0 
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Examples of Random Processes II
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(c)  Rayleigh fading process
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Classification of Random Processes

Based on whether its statistics change with time: the process is
non-stationary or stationary.

Different levels of stationarity:
I Strictly stationary: the joint pdf of any order is independent of a shift

in time.
I N th-order stationarity: the joint pdf does not depend on the time

shift, but depends on time spacings:

fx(t1),x(t2),...x(tN )(x1, x2, . . . , xN ; t1, t2, . . . , tN ) =

fx(t1+t),x(t2+t),...x(tN+t)(x1, x2, . . . , xN ; t1 + t, t2 + t, . . . , tN + t).

The first- and second-order stationarity:

fx(t1)(x, t1) = fx(t1+t)(x; t1 + t) = fx(t)(x)

fx(t1),x(t2)(x1, x2; t1, t2) = fx(t1+t),x(t2+t)(x1, x2; t1 + t, t2 + t)

= fx(t1),x(t2)(x1, x2; τ), τ = t2 − t1.
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Statistical Averages or Joint Moments

Consider N random variables x(t1),x(t2), . . .x(tN ). The joint
moments of these random variables is

E{xk1(t1),x
k2(t2), . . .x

kN (tN )} =

∫ ∞
x1=−∞

· · ·
∫ ∞
xN=−∞

xk11 x
k2
2 · · ·x

kN
N fx(t1),x(t2),...x(tN )(x1, x2, . . . , xN ; t1, t2, . . . , tN )

dx1dx2 . . . dxN ,

for all integers kj ≥ 1 and N ≥ 1.

Shall only consider the first- and second-order moments, i.e.,
E{x(t)}, E{x2(t)} and E{x(t1)x(t2)}. They are the mean value,
mean-squared value and (auto)correlation.
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Mean Value or the First Moment

The mean value of the process at time t is

mx(t) = E{x(t)} =

∫ ∞
−∞

xfx(t)(x; t)dx.

The average is across the ensemble and if the pdf varies with time
then the mean value is a (deterministic) function of time.

If the process is stationary then the mean is independent of t or a
constant:

mx = E{x(t)} =

∫ ∞
−∞

xfx(x)dx.
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Mean-Squared Value or the Second Moment

This is defined as

MSVx(t) = E{x2(t)} =

∫ ∞
−∞

x2fx(t)(x; t)dx (non-stationary),

MSVx = E{x2(t)} =

∫ ∞
−∞

x2fx(x)dx (stationary).

The second central moment (or the variance) is:

σ2x(t) = E
{

[x(t)−mx(t)]2
}

= MSVx(t)−m2
x(t) (non-stationary),

σ2x = E
{

[x(t)−mx]2
}

= MSVx −m2
x (stationary).
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Correlation

The autocorrelation function completely describes the power
spectral density of the random process.

Defined as the correlation between the two random variables
x1 = x(t1) and x2 = x(t2):

Rx(t1, t2) = E{x(t1)x(t2)}

=

∫ ∞
x1=−∞

∫ ∞
x2=−∞

x1x2fx1,x2(x1, x2; t1, t2)dx1dx2.

For a stationary process:

Rx(τ) = E{x(t)x(t+ τ)}

=

∫ ∞
x1=−∞

∫ ∞
x2=−∞

x1x2fx1,x2(x1, x2; τ)dx1dx2.

Wide-sense stationarity (WSS) process: E{x(t)} = mx for any t,
and Rx(t1, t2) = Rx(τ) for τ = t2 − t1.
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Properties of the Autocorrelation Function

1. Rx(τ) = Rx(−τ). It is an even function of τ because the same set
of product values is averaged across the ensemble, regardless of the
direction of translation.

2. |Rx(τ)| ≤ Rx(0). The maximum always occurs at τ = 0, though
there maybe other values of τ for which it is as big. Further Rx(0)
is the mean-squared value of the random process.

3. If for some τ0 we have Rx(τ0) = Rx(0), then for all integers k,
Rx(kτ0) = Rx(0).

4. If mx 6= 0 then Rx(τ) will have a constant component equal to m2
x.

5. Autocorrelation functions cannot have an arbitrary shape. The
restriction on the shape arises from the fact that the Fourier
transform of an autocorrelation function must be greater than or
equal to zero, i.e., F{Rx(τ)} ≥ 0.
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Power Spectral Density of a Random Process I

Taking the Fourier transform of the random process does not work.
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Power Spectral Density of a Random Process II

Need to determine how the average power of the process is
distributed in frequency.

Define a truncated process:

xT (t) =

{
x(t), −T ≤ t ≤ T

0, otherwise
.

Consider the Fourier transform of this truncated process:

XT (f) =

∫ ∞
−∞

xT (t)e−j2πftdt. (3)

Average the energy over the total time, 2T :

P =
1

2T

∫ T

−T
x2
T (t)dt =

1

2T

∫ ∞
−∞
|XT (f)|2 df (watts).
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Power Spectral Density of a Random Process III

Find the average value of P:

E{P} = E

{
1

2T

∫ T

−T
x2
T (t)dt

}
= E

{
1

2T

∫ ∞
−∞
|XT (f)|2 df

}
.

Take the limit as T →∞:

lim
T→∞

1

2T

∫ T

−T
E
{
x2
T (t)

}
dt = lim

T→∞

1

2T

∫ ∞
−∞

E
{
|XT (f)|2

}
df,

It follows that

MSVx = lim
T→∞

1

2T

∫ T

−T
E
{
x2
T (t)

}
dt

=

∫ ∞
−∞

lim
T→∞

E
{
|XT (f)|2

}
2T

df (watts).
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Power Spectral Density of a Random Process IV

Finally,

Sx(f) = lim
T→∞

E
{
|XT (f)|2

}
2T

(watts/Hz),

is the power spectral density of the process.

It can be shown that the power spectral density and the
autocorrelation function are a Fourier transform pair:

Rx(τ)←→ Sx(f) =

∫ ∞
τ=−∞

Rx(τ)e−j2πfτdτ.
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Time Averaging and Ergodicity

A process where any member of the ensemble exhibits the same
statistical behavior as that of the whole ensemble.

All time averages on a single ensemble member are equal to the
corresponding ensemble average:

E{xn(t))} =

∫ ∞
−∞

xnfx(x)dx

= lim
T→∞

1

2T

∫ T

−T
[xk(t, ωk)]

ndt, ∀ n, k.

For an ergodic process: To measure various statistical averages, it is
sufficient to look at only one realization of the process and find the
corresponding time average.

For a process to be ergodic it must be stationary. The converse is
not true.
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Examples of Random Processes

(Example 3.4) x(t) = A cos(2πf0t+ Θ), where Θ is a random
variable uniformly distributed on [0, 2π]. This process is both
stationary and ergodic.

(Example 3.5) x(t) = x, where x is a random variable uniformly
distributed on [−A,A], where A > 0. This process is WSS, but not
ergodic.

(Example 3.6) x(t) = A cos(2πf0t+ Θ) where A is a zero-mean
random variable with variance, σ2A, and Θ is uniform in [0, 2π].
Furthermore, A and Θ are statistically independent. This process is
not ergodic, but strictly stationary.
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Random Processes and LTI Systems

Linear, Time-Invariant

(LTI) System

Input Output

( ) ( )h t H f←→
( )tx ( )ty

,  ( ) ( )m R S fτ ←→
x x x

,  ( ) ( )m R S fτ ←→
y y y

,
( )R τ

x y

my = E{y[n]} = E

{∫ ∞
−∞

h(λ)x(t− λ)dλ

}
= mxH(0)

Sy(f) = |H(f)|2 Sx(f)

Ry(τ) = h(τ) ∗ h(−τ) ∗Rx(τ).
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Thermal Noise in Communication Systems

A natural noise source is thermal noise, whose amplitude statistics
are well modeled to be Gaussian with zero mean.

The autocorrelation and PSD are well modeled as:

Rw(τ) = kθG
e−|τ |/t0

t0
(watts),

Sw(f) =
2kθG

1 + (2πft0)2
(watts/Hz).

where k = 1.38× 10−23 joule/0K is Boltzmann’s constant, G is
conductance of the resistor (mhos); θ is temperature in degrees
Kelvin; and t0 is the statistical average of time intervals between
collisions of free electrons in the resistor (on the order of 10−12 sec).
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The noise PSD is approximately flat over the frequency range of 0
to 10 GHz ⇒ let the spectrum be flat from 0 to ∞:

Sw(f) =
N0

2
(watts/Hz),

where N0 = 4kθG is a constant.

Noise that has a uniform spectrum over the entire frequency range
is referred to as white noise

The autocorrelation of white noise is

Rw(τ) =
N0

2
δ(τ) (watts).

Since Rw(τ) = 0 for τ 6= 0, any two different samples of white
noise, no matter how close in time they are taken, are uncorrelated.

Since the noise samples of white noise are uncorrelated, if the noise
is both white and Gaussian (for example, thermal noise) then the
noise samples are also independent.
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Example

Suppose that a (WSS) white noise process, x[n], of zero-mean and
power spectral density N0/2 is applied to the input of the filter.

(a) Find and sketch the power spectral density and autocorrelation
function of the random process y[n] at the output of the filter.

(b) What are the mean and variance of the output process y[n]?

L

R( )tx ( )ty
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H(f) =
R

R+ j2πfL
=

1

1 + j2πfL/R
.

Sy(f) =
N0

2

1

1 +
(
2πL
R

)2
f2
←→ Ry(τ) =

N0R

4L
e−(R/L)|τ |.

0 0

2

0N

(Hz) f (sec) τ

L

RN

4

0

( ) (watts/Hz)S f
y

( ) (watts)R τ
y
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