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Signals and Systems

Input
signal
x[n]

System

Output
signal
y[n]

Signal
I Applied to something that conveys information

I Represented as a function of one or more independent variables

I Continuous-time vs. Discrete-time

I Continuous-amplitude vs. Discrete-amplitude

System: A transformation or operator that maps a input sequence
into an output sequence

y[n] = T
(
x[n]

)
or y(t) = T

(
x(n)

)
.
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Signals

Discrete-time signal x[n]

E∞ =

∞∑
n=−∞

∣∣x[n]
∣∣2, P = lim

T→∞

1

2T

T∑
n=−T

∣∣x[n]
∣∣2 (1)

Some signals have infinite average power, energy or both

A signal is called an energy signal if E∞ <∞

A signal is called an power signal if 0 < P∞ <∞

A signal can be an energy signal, a power signal, or neither type

A signal cannot be both an energy signal or a power signal

Examples: x[n] = 1, x[n] = sinn, x[n] = n
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Some Examples

Time shift: x[n− n0]

Time reversal: x[−n]

Time scaling: x[an]

Periodic signal with period N : x[n] = x[t+N ]

Even signal: x[−n] = x[n]

Odd signal: x[−n] = −x[n]

Exponential signal: x[n] = Cean

I Real-valued exponential vs Complex exponential
I Growing or decaying?
I Periodic or aperiodic?

Real sinusoidal signal: x[n] = A cos(ωn+ φ)
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Unit Step Function and Unit Impulse

Unit step function

u[n] =

{
0, n < 0
1, n > 0

Unit impulse function

δ[n] = u[n]− u[n− 1], u[n] =

n∑
m=−∞

δ[m]

n0

1

n0

1

Some properties:

I

∞∑
n−∞

x[n]δ[n− n0] = x[n0]: sifting property

I x[n] =

∞∑
k=−∞

x[k]δ[n− k]: signal decomposition
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Linearity

Input-output relationship: yi[n] = T
(
xi[n]

)
A system is linear if

I T
(
ax[n]

)
= aT

(
x[n]

)
I T

(
x1[n] + x2[n]

)
= T

(
x1[n]

)
+ T

(
x2[n]

)
I or y[n] = T

(
a1x1[n] + a2x2[n]

)
= a1y1[n] + a2y2[n].

Examples: linear or not
1 Time scaler: y[n] = x[2n]

2 Amplifier: y[n] = 2x[n] + 1

3 Accumulator: y[n] =

n∑
k=−∞

x[k]

4 Squarer: y[n] = x2[n]
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Causality and Stability

Causality: Output only depends on values of the input at only the
present and past times

Examples: casual or not
1 Time scaler: y[n] = x[2n] and y[n] = x[n/2]

2 y[n] = sin
(
x[n]

)
Stability: Small input lead to responses that do diverge∣∣x[n]

∣∣ ≤ B for some B <∞ −→
∣∣y[n]

∣∣ <∞
Examples: stable or not

1 y[n] = nx[n]

2 y[n] = ex[n]

3 y[n] = y[n− 1] + x[n]
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Time-Invariance

Time-invariant system: characteristics of the system are fixed over
time

y[n] = T
(
x[n]

)
−→ y[n− n0] = T

(
x[n− n0]

)
Examples: Time-invariant or not

1 y[n] = sinx[n]

2 y[n] = nx[n]

3 y[n] = x[2n]

Linear time-invariant (LTI) system: good model for many real-life
systems

Examples: LTI or not

1 y[n] =
1

2n0

n+n0∑
k=n−n0

x[k]
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Response in LTI Systems

x[n] = δ[n] System y[n] = h[n]

Impulse response: Response to a unit impulse

Any signal can be expressed as a sum of impulses

x[n] =

∞∑
k=−∞

x[k]δ[n− k]

LTI system: δ[n− k]→ h[n− k]

Output signal:

y[n] =

∞∑
k=−∞

x[k]h[n− k]
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Convolution Operation

Convolution operation: y[n] = x[n] ∗ h[n] =

∞∑
k=−∞

x[k]h[n− k]

Commutative: x[n] ∗ h[n] = h[n] ∗ x[n]

Associative: x[n] ∗ (h1[n] ∗ h2[n]) = (x[n] ∗ h1[n]) ∗ h2[n]

Distributive: x[n] ∗ (h1[n] + h2[n]) = x[n] ∗ h1[n] + x[n] ∗ h2[n]

Examples: Flip, shift, multiply and add

n0 2−2 4

1

2

x[n] ∗

n0 2−2

1
h[n] =

n0 2−2 4

1

2

3

y[n]
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LTI System Properties and Impulse Response

Any LTI system can described by its impulse response

Memoryless: h[n] = aδ[n]

Causal: h[n] = 0, ∀n < 0

Stable:
∞∑

n=−∞

∣∣h[n]
∣∣ <∞
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Continuous time Signals

Unit step function

u(t) =

{
0, t < 0
1, t > 0

Unit impulse function or Dirac delta function

δ(t) =
du(t)

dt
, u(t) =

∫ t

−∞
δ(τ)dτ

t

1

1 n

1

1

δ(t) = 0 for t 6= 0

δ(t) in unbounded at t = 0∫ ∞
−∞

δ(t)dt = 1 and

∫ ∞
−∞

x(t)δ(t− t0)dt = x(t0): sifting property
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Response in LTI Systems

x(t) = δ(t) System y(t) = h(t)

Impulse response: Response to a unit impulse

Any continuous-time signal can be expressed as

x(t) =

∫ ∞
−∞

x(τ)δ(t− τ)dτ

LTI system: δ(t− τ)→ h(t− τ)

Output signal:

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ , x(t) ∗ h(t)

Examples: x(t) = e−atu(t), h(t) = u(t). Then, y(t) = 1
−a
[
1− e−at

]
.
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Response to Complex Exponentials

Input signal: x(t) = est

Output signal:

y(t) = est
∫ ∞
−∞

h(τ)e−sτdτ = H(s)est

H(s) at s: eigenvalue associated with the eigenfunction est

Input signal: x[n] = zn

Output signal:

y[n] = zn
∞∑

k=−∞
h[k]z−k = H(z)zn

H(z) at z: eigenvalue associated with the eigenfunction zn

Why is eigenfunction is important?

Can any signal be represented as a summation of complex
exponentials?
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Fourier Series I

Periodic signal with period T : x(t) = x(t+ T )

ω0 = 2π/T is called the “angular fundamental frequency”

f0 = 1/T is called the “fundamental frequency”

Harmonically related complex exponentials: Φk(t) = ejkω0t

Assume a periodic signal x(t) can be represented as

Synthesis form : x(t) =

∞∑
k=−∞

ake
jkω0t

Coefficients ak’s

Analysis form: ak =
1

T

∫
T
x(t)e−jkω0tdt
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Fourier Series II

Fourier Analysis using fundamental frequency f0 = ω0/(2π)
I Synthesis form:

x(t) =

∞∑
k=−∞

akejk2πf0t

I Analysis form:

ak =
1

T

∫ T/2

−T/2
x(t)e−jk2πf0tdt

Parseval’s theorem

1

T

∫ T/2

−T/2
x2(t)dt =

∞∑
k=−∞

|ck|2

Examples: A periodic square wave
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Fourier Transform

A periodic square wave & Fourier Coefficients

x(t) =

{
1, |t| < T1
0, T1 < |t| < T/2

, ak =
2 sin(kω0T1)

kω0T

Envelop function

Tak =
2 sinωT1

ω

∣∣∣∣
ω=kω0

Fourier series coefficients and their envelop with different values of
T with T1 fixed

T →∞: Fourier series coefficients approaches the envelope
function.
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Fourier Transform I

Aperiodic signal: can be treated as a periodic signal with T →∞

The envelop function is called the Fourier Transform

Derivations of Fourier Transform
I Period padding for a aperiodic signal x(t) with finite duration

x(t)

t

x̃(t)

t
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Fourier Transform II

I Express x̃(t) using Fourier Series

x̃(t) =

∞∑
k=−∞

akejkω0t

where the Fourier Series coefficients are

ak =
1

T

∫
T

x̃(t)ejkω0tdt =
1

T

∫ ∞
−∞

x(t)ejkω0tdt

Define X(jω) =

∫ ∞
−∞

x(t)e−jωtdt: Analysis Equation of Fourier

Transform, then ak =
1

T
X(jω). Thus,

x̃(t) =

∞∑
k=−∞

1

T
X(jkω0)ejkω0t =

∞∑
k=−∞

1

2π
X(jkω0)ejkω0tω0
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Fourier Transform III

I As T →∞, ω0 → 0

lim
ω0→0

∞∑
k=−∞

1

2π
X(jkω0)ejkω0tω0 =

∫ ∞
−∞

1

2π
X(jω)ejωtdω

As x̃(t)→ x(t), Synthesis Equation of Fourier Transform of x(t):

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω

Fourier Transform can be applied to periodic and aperiodic signals.
Fourier Series can only be applied to periodic signals

Examples: x(t) = e−atu(t) for a > 0
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Properties of Fourier Transform I

Linearity: if x1(t)←→ X1(jω) and x2(t)←→ X2(jω)

a1x1(t) + a2x2(t)←→ a1X1(jω) + a2X2(jω)

Time shifting: x(t− t0)←→ e−jωt0X(jω)

Conjugate: x∗(t)←→ X∗(−jω)

Differentiation and Integration:

d

dt
x(t) ←→ jωX(jω)∫ t

−∞
x(τ)dτ ←→ 1

jω
X(jω) + πX(0)δ(ω)

Time scaling: x(at)←→ 1

|a|
X

(
jω

a

)
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Properties of Fourier Transform II

Parseval Equality:

∫ ∞
−∞

∣∣x(t)
∣∣2dt =

1

2π

∫ ∞
−∞

∣∣X(jω)
∣∣2dω

Duality: Suppose x(t)←→ X(jω) and y(t)←→ Y (jω). If y(t) has
the shape of X(jω), then Y (jω) has the shape of x(t)
Example: δ(t)←→ 1

Convolution: x(t) ∗ h(t)←→ X(jω)H(jω)

Multiplication: x(t)h(t)←→ 1
2πX(jω) ∗H(jω)

Fourier Transform can often be denoted as X(f) instead of X(jω)

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt

x(t) =

∫ ∞
−∞

X(f)ej2πftdf
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Frequency Transfer Function

LTI system: y(t) = x(t) ∗ h(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ

Fourier transform: Y (f) = X(f)H(f)

Fourier transform of the impulse response function

H(f) =

∫ ∞
−∞

h(t)e−j2πftdt

is called frequency transfer function or the frequency response

H(f) =
∣∣H(f)

∣∣ejθ(f)
I
∣∣H(f)

∣∣: magnitude response

I θ(f): phase response

Examples: x(t) = A cos 2πf0t, output will be

y(t) = A
∣∣H(f0)

∣∣ cos
[
2πf0t+ θ(f0)

]
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Distortionless Transmission

Ideal system with constant delay and amplifier y(t) = Kx(t− t0)

Fourier Transform from both sides: Y (f) = KX(f)e−j2πft0

Transfer function

H(f) = Ke−j2πft0

Ideal distortionless transmission: constant magnitude response and
its phase shift must be linear with frequency

In practice, a signal will be distorted by some parts of a system

Phase or amplitude correction (equalization) may be required for
correction
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Ideal Filter

No ideal network exists:
∣∣H(f)

∣∣ = K, ∀f −→ infinite bandwidth
Truncated network: all frequencies in

[
fl, fu

]
without distortion

Passband: fl < f < fu, bandwidth Wf = fu − fl∣∣H(f)
∣∣

f−fu −fl fufl∣∣H(f)
∣∣

f−fu fufl∣∣H(f)
∣∣

f−fu −fl fu→∞fl
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Ideal Bandpass Filter

Constant magnitude response∣∣H(f)
∣∣ =

{
1 for |f | < fu
0 for |f | ≥ fu

Linear phase response: e−jθ(f) = e−j2πft0

Impulse response of the ideal low-pass filter

h(t) = F−1
{
H(f)

}
=

∫ ∞
−∞

H(f)ej2πftdf

= 2fu
sin 2πfu(t− t0)

2πfu(t− t0)

What is wrong with this impulse response function?

Realizable filters: Butterworth filter, Raised-cosine filter, etc
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