EE558 - Digital Communications

Lecture 2: Review of Signals and Systems

Dr. Duy Nguyen

Signals and Systems

■ Signal

- Applied to something that conveys information
- Represented as a function of one or more independent variables
- Continuous-time vs. Discrete-time
- Continuous-amplitude vs. Discrete-amplitude

■ System: A transformation or operator that maps a input sequence into an output sequence

$$
y[n]=T(x[n]) \quad \text { or } \quad y(t)=T(x(n))
$$

Signals

■ Discrete-time signal $x[n]$

$$
\begin{equation*}
E_{\infty}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}, \quad P=\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{n=-T}^{T}|x[n]|^{2} \tag{1}
\end{equation*}
$$

- Some signals have infinite average power, energy or both
- A signal is called an energy signal if $E_{\infty}<\infty$
- A signal is called an power signal if $0<P_{\infty}<\infty$
- A signal can be an energy signal, a power signal, or neither type
- A signal cannot be both an energy signal or a power signal

■ Examples: $x[n]=1, x[n]=\sin n, x[n]=n$

Some Examples

- Time shift: $x\left[n-n_{0}\right]$
- Time reversal: $x[-n]$
- Time scaling: $x[a n]$

■ Periodic signal with period $N: x[n]=x[t+N]$
■ Even signal: $x[-n]=x[n]$

- Odd signal: $x[-n]=-x[n]$

■ Exponential signal: $x[n]=C \mathrm{e}^{a n}$

- Real-valued exponential vs Complex exponential
- Growing or decaying?
- Periodic or aperiodic?

■ Real sinusoidal signal: $x[n]=A \cos (\omega n+\phi)$

Unit Step Function and Unit Impulse

- Unit step function

$$
u[n]= \begin{cases}0, & n<0 \\ 1, & n>0\end{cases}
$$

- Unit impulse function

$$
\delta[n]=u[n]-u[n-1], \quad u[n]=\sum_{m=-\infty}^{n} \delta[m]
$$

- Some properties:
- $\sum_{n-\infty}^{\infty} x[n] \delta\left[n-n_{0}\right]=x\left[n_{0}\right]$: sifting property
- $x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]:$ signal decomposition

Linearity

■ Input-output relationship: $y_{i}[n]=T\left(x_{i}[n]\right)$

- A system is linear if
- $T(a x[n])=a T(x[n])$
- $T\left(x_{1}[n]+x_{2}[n]\right)=T\left(x_{1}[n]\right)+T\left(x_{2}[n]\right)$
- or $y[n]=T\left(a_{1} x_{1}[n]+a_{2} x_{2}[n]\right)=a_{1} y_{1}[n]+a_{2} y_{2}[n]$.
- Examples: linear or not
(1) Time scaler: $y[n]=x[2 n]$
(2) Amplifier: $y[n]=2 x[n]+1$
(3) Accumulator: $y[n]=\sum_{k=-\infty}^{n} x[k]$
(9) Squarer: $y[n]=x^{2}[n]$

Causality and Stability

- Causality: Output only depends on values of the input at only the present and past times
- Examples: casual or not
(1) Time scaler: $y[n]=x[2 n]$ and $y[n]=x[n / 2]$
(2) $y[n]=\sin (x[n])$

■ Stability: Small input lead to responses that do diverge

$$
|x[n]| \leq B \text { for some } B<\infty \longrightarrow|y[n]|<\infty
$$

■ Examples: stable or not
(1) $y[n]=n x[n]$
(2) $y[n]=\mathrm{e}^{x[n]}$
(3) $y[n]=y[n-1]+x[n]$

Time-Invariance

- Time-invariant system: characteristics of the system are fixed over time

$$
y[n]=T(x[n]) \quad \longrightarrow \quad y\left[n-n_{0}\right]=T\left(x\left[n-n_{0}\right]\right)
$$

- Examples: Time-invariant or not
(1) $y[n]=\sin x[n]$
(2) $y[n]=n x[n]$
(3) $y[n]=x[2 n]$

■ Linear time-invariant (LTI) system: good model for many real-life systems

■ Examples: LTI or not
(1) $y[n]=\frac{1}{2 n_{0}} \sum_{k=n-n_{0}}^{n+n_{0}} x[k]$

Response in LTI Systems

$$
x[n]=\delta[n] \longrightarrow \text { System } \longrightarrow y[n]=h[n]
$$

■ Impulse response: Response to a unit impulse

- Any signal can be expressed as a sum of impulses

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

■ LTI system: $\delta[n-k] \rightarrow h[n-k]$

- Output signal:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Convolution Operation

- Convolution operation: $y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$

■ Commutative: $x[n] * h[n]=h[n] * x[n]$
■ Associative: $x[n] *\left(h_{1}[n] * h_{2}[n]\right)=\left(x[n] * h_{1}[n]\right) * h_{2}[n]$
■ Distributive: $x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] * h_{2}[n]$
■ Examples: Flip, shift, multiply and add

LTI System Properties and Impulse Response

■ Any LTI system can described by its impulse response
■ Memoryless: $h[n]=a \delta[n]$

- Causal: $h[n]=0, \forall n<0$
- Stable: $\sum_{n=-\infty}^{\infty}|h[n]|<\infty$

Continuous time Signals

- Unit step function

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>0\end{cases}
$$

- Unit impulse function or Dirac delta function

$$
\delta(t)=\frac{\mathrm{d} u(t)}{\mathrm{d} t}, \quad u(t)=\int_{-\infty}^{t} \delta(\tau) \mathrm{d} \tau
$$

- $\delta(t)=0$ for $t \neq 0$
- $\delta(t)$ in unbounded at $t=0$

■ $\int_{-\infty}^{\infty} \delta(t) \mathrm{d} t=1$ and $\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) \mathrm{d} t=x\left(t_{0}\right)$: sifting property

Response in LTI Systems

$$
x(t)=\delta(t) \longrightarrow \text { System } \longrightarrow y(t)=h(t)
$$

■ Impulse response: Response to a unit impulse
■ Any continuous-time signal can be expressed as

$$
x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) \mathrm{d} \tau
$$

■ LTI system: $\delta(t-\tau) \rightarrow h(t-\tau)$
■ Output signal:

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) \mathrm{d} \tau \triangleq x(t) * h(t)
$$

■ Examples: $x(t)=\mathrm{e}^{-a t} u(t), h(t)=u(t)$. Then, $y(t)=\frac{1}{-a}\left[1-\mathrm{e}^{-a t}\right]$.

Response to Complex Exponentials

■ Input signal: $x(t)=\mathrm{e}^{s t}$
■ Output signal:

$$
y(t)=\mathrm{e}^{s t} \int_{-\infty}^{\infty} h(\tau) \mathrm{e}^{-s \tau} \mathrm{~d} \tau=H(s) \mathrm{e}^{s t}
$$

- $H(s)$ at s : eigenvalue associated with the eigenfunction $\mathrm{e}^{s t}$

■ Input signal: $x[n]=z^{n}$
■ Output signal:

$$
y[n]=z^{n} \sum_{k=-\infty}^{\infty} h[k] z^{-k}=H(z) z^{n}
$$

■ $H(z)$ at z : eigenvalue associated with the eigenfunction z^{n}
■ Why is eigenfunction is important?
■ Can any signal be represented as a summation of complex exponentials?

Fourier Series I

- Periodic signal with period $T: x(t)=x(t+T)$
- $\omega_{0}=2 \pi / T$ is called the "angular fundamental frequency"
- $f_{0}=1 / T$ is called the "fundamental frequency"
- Harmonically related complex exponentials: $\Phi_{k}(t)=\mathrm{e}^{\mathrm{j} k \omega_{0} t}$
- Assume a periodic signal $x(t)$ can be represented as

$$
\text { Synthesis form : } \quad x(t)=\sum_{k=-\infty}^{\infty} a_{k} \mathrm{e}^{\mathrm{j} k \omega_{0} t}
$$

■ Coefficients a_{k} 's
Analysis form: $\quad a_{k}=\frac{1}{T} \int_{T} x(t) \mathrm{e}^{-\mathrm{j} k \omega_{0} t} \mathrm{~d} t$

Fourier Series II

■ Fourier Analysis using fundamental frequency $f_{0}=\omega_{0} /(2 \pi)$

- Synthesis form:

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} \mathrm{e}^{\mathrm{j} k 2 \pi f_{0} t}
$$

- Analysis form:

$$
a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) \mathrm{e}^{-\mathrm{j} k 2 \pi f_{0} t} \mathrm{~d} t
$$

- Parseval's theorem

$$
\frac{1}{T} \int_{-T / 2}^{T / 2} x^{2}(t) \mathrm{d} t=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}
$$

- Examples: A periodic square wave

Fourier Transform

- A periodic square wave \& Fourier Coefficients

$$
x(t)=\left\{\begin{array}{ll}
1, & |t|<T_{1} \\
0, & T_{1}<|t|<T / 2
\end{array}, \quad a_{k}=\frac{2 \sin \left(k \omega_{0} T_{1}\right)}{k \omega_{0} T}\right.
$$

- Envelop function

$$
T a_{k}=\left.\frac{2 \sin \omega T_{1}}{\omega}\right|_{\omega=k \omega_{0}}
$$

- Fourier series coefficients and their envelop with different values of T with T_{1} fixed
■ $T \rightarrow \infty$: Fourier series coefficients approaches the envelope function.

Fourier Transform I

■ Aperiodic signal: can be treated as a periodic signal with $T \rightarrow \infty$

- The envelop function is called the Fourier Transform

■ Derivations of Fourier Transform

- Period padding for a aperiodic signal $x(t)$ with finite duration

Fourier Transform II

- Express $\tilde{x}(t)$ using Fourier Series

$$
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} a_{k} \mathrm{e}^{\mathrm{j} k \omega_{0} t}
$$

where the Fourier Series coefficients are

$$
a_{k}=\frac{1}{T} \int_{T} \tilde{x}(t) \mathrm{e}^{\mathrm{j} k \omega_{0} t} \mathrm{~d} t=\frac{1}{T} \int_{-\infty}^{\infty} x(t) \mathrm{e}^{\mathrm{j} k \omega_{0} t} \mathrm{~d} t
$$

Define $X(\mathrm{j} \omega)=\int_{-\infty}^{\infty} x(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t$: Analysis Equation of Fourier Transform, then $a_{k}=\frac{1}{T} X(j \omega)$. Thus,

$$
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} \frac{1}{T} X\left(\mathrm{j} k \omega_{0}\right) \mathrm{e}^{\mathrm{j} k \omega_{0} t}=\sum_{k=-\infty}^{\infty} \frac{1}{2 \pi} X\left(\mathrm{j} k \omega_{0}\right) \mathrm{e}^{\mathrm{j} k \omega_{0} t} \omega_{0}
$$

Fourier Transform III

- As $T \rightarrow \infty, \omega_{0} \rightarrow 0$

$$
\lim _{\omega_{0} \rightarrow 0} \sum_{k=-\infty}^{\infty} \frac{1}{2 \pi} X\left(\mathrm{j} k \omega_{0}\right) \mathrm{e}^{\mathrm{j} k \omega_{0} t} \omega_{0}=\int_{-\infty}^{\infty} \frac{1}{2 \pi} X(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega
$$

As $\tilde{x}(t) \rightarrow x(t)$, Synthesis Equation of Fourier Transform of $x(t)$:

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega
$$

- Fourier Transform can be applied to periodic and aperiodic signals. Fourier Series can only be applied to periodic signals
- Examples: $x(t)=\mathrm{e}^{-a t} u(t)$ for $a>0$

Properties of Fourier Transform I

■ Linearity: if $x_{1}(t) \longleftrightarrow X_{1}(\mathrm{j} \omega)$ and $x_{2}(t) \longleftrightarrow X_{2}(\mathrm{j} \omega)$

$$
a_{1} x_{1}(t)+a_{2} x_{2}(t) \longleftrightarrow a_{1} X_{1}(\mathrm{j} \omega)+a_{2} X_{2}(\mathrm{j} \omega)
$$

- Time shifting: $x\left(t-t_{0}\right) \longleftrightarrow \mathrm{e}^{-\mathrm{j} \omega t_{0}} X(\mathrm{j} \omega)$
- Conjugate: $x^{*}(t) \longleftrightarrow X^{*}(-\mathrm{j} \omega)$
- Differentiation and Integration:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} x(t) & \longleftrightarrow \mathrm{j} \omega X(\mathrm{j} \omega) \\
\int_{-\infty}^{t} x(\tau) \mathrm{d} \tau & \longleftrightarrow \frac{1}{\mathrm{j} \omega} X(\mathrm{j} \omega)+\pi X(0) \delta(\omega)
\end{aligned}
$$

- Time scaling: $x(a t) \longleftrightarrow \frac{1}{|a|} X\left(\frac{\mathrm{j} \omega}{a}\right)$

Properties of Fourier Transform II

■ Parseval Equality: $\int_{-\infty}^{\infty}|x(t)|^{2} \mathrm{~d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\mathrm{j} \omega)|^{2} \mathrm{~d} \omega$
■ Duality: Suppose $x(t) \longleftrightarrow X(\mathrm{j} \omega)$ and $y(t) \longleftrightarrow Y(\mathrm{j} \omega)$. If $y(t)$ has the shape of $X(\mathrm{j} \omega)$, then $Y(\mathrm{j} \omega)$ has the shape of $x(t)$ Example: $\delta(t) \longleftrightarrow 1$

- Convolution: $x(t) * h(t) \longleftrightarrow X(\mathrm{j} \omega) H(\mathrm{j} \omega)$
- Multiplication: $x(t) h(t) \longleftrightarrow \frac{1}{2 \pi} X(\mathrm{j} \omega) * H(\mathrm{j} \omega)$
- Fourier Transform can often be denoted as $X(f)$ instead of $X(\mathrm{j} \omega)$

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) \mathrm{e}^{-\mathrm{j} 2 \pi f t} \mathrm{~d} t \\
x(t) & =\int_{-\infty}^{\infty} X(f) \mathrm{e}^{\mathrm{j} 2 \pi f t} \mathrm{~d} f
\end{aligned}
$$

Frequency Transfer Function

- LTI system: $y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) \mathrm{d} \tau$

■ Fourier transform: $Y(f)=X(f) H(f)$

- Fourier transform of the impulse response function

$$
H(f)=\int_{-\infty}^{\infty} h(t) \mathrm{e}^{-\mathrm{j} 2 \pi f t} \mathrm{~d} t
$$

is called frequency transfer function or the frequency response

- $H(f)=|H(f)| \mathrm{e}^{\mathrm{j} \theta(f)}$
- $|H(f)|$: magnitude response
- $\theta(f)$: phase response

■ Examples: $x(t)=A \cos 2 \pi f_{0} t$, output will be

$$
y(t)=A\left|H\left(f_{0}\right)\right| \cos \left[2 \pi f_{0} t+\theta\left(f_{0}\right)\right]
$$

Distortionless Transmission

■ Ideal system with constant delay and amplifier $y(t)=K x\left(t-t_{0}\right)$
■ Fourier Transform from both sides: $Y(f)=K X(f) \mathrm{e}^{-\mathrm{j} 2 \pi f t_{0}}$

- Transfer function

$$
H(f)=K \mathrm{e}^{-\mathrm{j} 2 \pi f t_{0}}
$$

- Ideal distortionless transmission: constant magnitude response and its phase shift must be linear with frequency

■ In practice, a signal will be distorted by some parts of a system

- Phase or amplitude correction (equalization) may be required for correction

Ideal Filter

■ No ideal network exists: $|H(f)|=K, \forall f \longrightarrow$ infinite bandwidth
■ Truncated network: all frequencies in $\left[f_{l}, f_{u}\right]$ without distortion
■ Passband: $f_{l}<f<f_{u}$, bandwidth $W_{f}=f_{u}-f_{l}$

Ideal Bandpass Filter

■ Constant magnitude response

$$
|H(f)|= \begin{cases}1 & \text { for }|f|<f_{u} \\ 0 & \text { for }|f| \geq f_{u}\end{cases}
$$

■ Linear phase response: $\mathrm{e}^{-\mathrm{j} \theta(f)}=\mathrm{e}^{-\mathrm{j} 2 \pi f t_{0}}$
■ Impulse response of the ideal low-pass filter

$$
\begin{aligned}
h(t)=\mathcal{F}^{-1}\{H(f)\} & =\int_{-\infty}^{\infty} H(f) \mathrm{e}^{\mathrm{j} 2 \pi f t} \mathrm{~d} f \\
& =2 f_{u} \frac{\sin 2 \pi f_{u}\left(t-t_{0}\right)}{2 \pi f_{u}\left(t-t_{0}\right)}
\end{aligned}
$$

■ What is wrong with this impulse response function?
■ Realizable filters: Butterworth filter, Raised-cosine filter, etc

