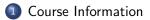
EE558 - Digital Communications

Lecture 1: Introduction & Overview


Dr. Duy Nguyen

SAN DIEGO STATE UNIVERSITY

Leadership Starts Here

Outline

2 Introduction to Digital Communications

Administration

Hours and Location

- Lectures: TTH 12:30 13:45
- Location: SH-127
- ▶ Office hours: Tue 14:00 16:00 or by email appointment
- Course webpage:

http://engineering.sdsu.edu/~nguyen/EE558/index.html

Instructor: Dr. Duy Nguyen

- Office: ENG-408
- Phone: (619) 594 2430
- Email: duy.nguyen@sdsu.edu
- Webpage: http://engineering.sdsu.edu/~nguyen
- Grader: Ms.Srilakshmi Alla
 - Email: shrilaksmialla94@gmail.com

Syllabus

Prerequisite

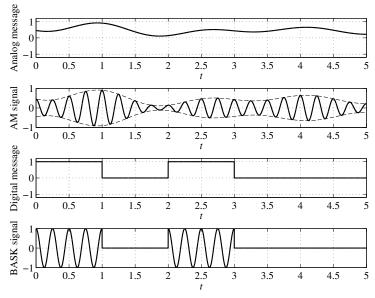
- ▶ EE 458 Analog and Pulse Communication Systems
- Knowledge of MATLAB programming
- References
 - B. Sklar, *Digital Communications: Fundamentals and Applications*, 2nd Ed., Prentice Hall, 2001.
 - 2. J. Proakis, Digital Communications, 4th Ed., McGraw-Hill, 2000.
- Homeworks: Bi-weekly, Total: 7 (6 best will be chosen). Late submission: maximum 1 day, 20% score deducted
- Assessments: only textbooks, slides and lecture notes are allowed in Quizzes and Exams
 - Homeworks: 20%
 - 3 Quizzes: 15% (25-minute each)
 - 2 Midterm Exams: 30% (1-hour and 15-minute each)
 - Final Exam: 35% (2-hour)

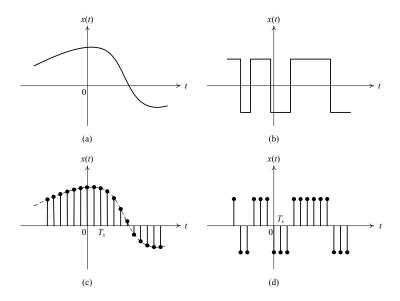
Syllabus

Week	Day	Task	Week	Day	Task
1	TU	First day of class	9	TU	
Aug 29	TH		Oct 24	TH	Quiz 2
2	TU	HW1 out	10	TU	HW5 out, HW4 due
Sep 5	TH		Oct 31	TH	
3	TU		11	TU	
Sep 12	TH		Nov 7	TH	Midterm Exam 2
4	TU	HW2 out, HW1 due	12	TU	HW6 out, HW5 due
Sep 19	TH		Nov 14	TH	
5	TU		13	TU	
Sep 26	TH	Quiz 1	Nov 21	TH	Thanksgiving
6	TU	HW3 out, HW2 due	14	TU	HW7 out, HW6 due
Oct 3	TH		Nov 28	TH	Quiz 3
7	TU		15	TU	
Oct 10	TH	Midterm Exam 1	Dec 5	TH	
8	TU	HW4 out, HW3 due	16	TU	HW7 due
Oct 17	TH		Dec 12	TH	Course Summary

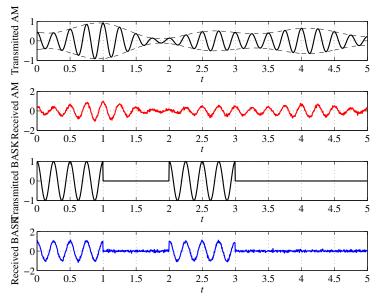
Topics to Cover

- Related Background
 - Signals and systems
 - Probability and random processes
- Sampling and quantization techniques
- Noise figures and noise temperature of systems
- Communication link analysis and link budgets
- Baseband binary modulation techniques
- Optimum receiver design and performance
- Communication over band-limited channels (if time permits)
- Equalization and multi-carrier transmission (if time permits)

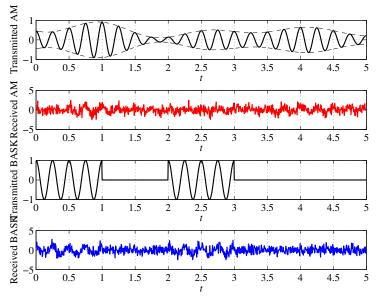

Outline


Introduction to Digital Communications

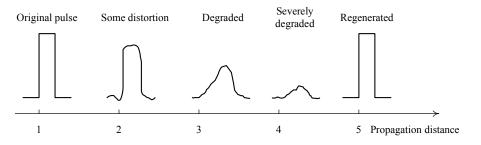
Analog and Digital Amplitude Modulations



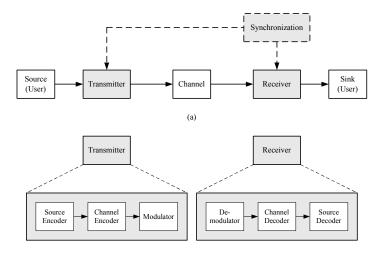
Introduction to Digital Communications


What is Digital Communication?

Why Digital Communications?



Why Digital Communications?


Introduction to Digital Communications

Regenerative Repeater in Digital Communications

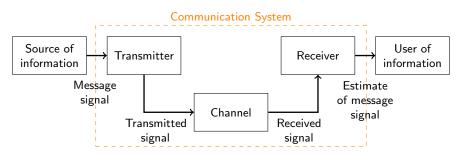
- **Digital communications:** Transmitted signals belong to a finite set of waveforms → The distorted signal can be recovered to its ideal shape, hence removing all the noise
- Analog communications: Transmitted signals are analog waveforms, which can take infinite variety of shapes → Once the analog signal is distorted, the distortion cannot be removed

Block Diagram of a Communication System

(b)

Note: "Synchronization" block is only present in a digital system Introduction to Digital Communications

Digital vs. Analog


Advantages:

- Digital signals are much easier to be regenerated
- Digital circuits are less subject to distortion and interference
- Digital circuits are more reliable and can be produced at a lower cost than analog circuits
- It is more flexible to implement digital hardware than analog hardware
- Digital signals are beneficial from digital signal processing (DSP) techniques

Disadvantages:

- Heavy signal processing
- Synchronization is crucial
- Larger transmission bandwidth
- Non-graceful degradation

Digital Communications

- The main objective of a communication system is the transfer of information over a channel
- Digital communication: transmitted signals belong to a finite set of waveforms
- Estimate of message signal: decision-making regarding the digital meaning of that waveform
- Performance is usually expressed as bit-error-rate (BER)

Terminologies

- Information source
- Character and alphabet
- Bit and bit stream
- Symbol
- Baud
- Digital waveform
- Data rate
- BER