<div class="gmail_quote">---------- Forwarded message ----------<br>From: "Angel Armando Boada Velazco" <<a href="mailto:angelboada2@gmail.com">angelboada2@gmail.com</a>><br>Date: Apr 20, 2016 4:13 PM<br>Subject: [CSRC-SDSU COLLOQUIUM]: The role of membrane tension in clathrin-mediated endocytosis<br>To:  <<a href="mailto:csca@roswell.sdsu.edu">csca@roswell.sdsu.edu</a>><br>Cc: <br><br type="attribution"><div dir="ltr"><b style="font-size:12.8px">DATE</b><span style="font-size:12.8px">:  <span><span>Friday, April 22nd, 2016</span></span></span><b style="font-size:12.8px"><br><br></b><div><b style="font-size:12.8px">TITLE</b><span style="font-size:12.8px">:  </span> The role of membrane tension in clathrin-mediated endocytosis</div><div style="font-size:12.8px"><br style="font-size:12.8px"><b style="font-size:12.8px">TIME</b><span style="font-size:12.8px">:  </span><span style="font-size:12.8px"><span><span><span><span>3:30 PM</span></span></span></span></span><br style="font-size:12.8px"><br style="font-size:12.8px"><b style="font-size:12.8px">LOCATION</b><span style="font-size:12.8px">:  GMCS 214</span><br style="font-size:12.8px"><br style="font-size:12.8px"><b style="font-size:12.8px">SPEAKER</b><span style="font-size:12.8px">:  Dr. </span><span style="font-family:arial,helvetica,sans-serif;font-size:12.8px"></span><span style="font-size:12.8px">Padmini Rangamani. Assistant Professor in Mechanical Engineering, </span><span style="font-size:12.8px">University of California, San Diego.</span></div><div><br style="font-size:12.8px"><b style="font-size:12.8px">ABSTRACT</b><span style="font-size:12.8px">:  </span>In
 clathrin-mediated endocytosis (CME), clathrin and various adaptor 
proteins coat a patch of the plasma membrane, which is reshaped to form a
 budded vesicle. Experimental studies have demonstrated that elevated 
membrane tension can inhibit bud formation by a clathrin coat. I 
will first discuss recent results that show that membrane tension can be
 heterogeneous along the surface of the membrane and depend on protein 
concentration. Then I will discuss the mechanics of membrane budding 
across a range of membrane tensions by simulating clathrin coats that 
either grow in area or progressively induce greater curvature. At low 
membrane tension, progressively increasing the area of a 
curvature-generating coat causes the membrane to smoothly evolve from a 
flat to budded morphology, whereas the membrane remains essentially flat
 at high membrane tensions. Interestingly, at physiologically relevant, 
intermediate membrane tensions, the shape evolution of the membrane 
undergoes a ‘’snapthrough instability'' in which increasing coat area 
causes the membrane to ``snap'' from an open, U-shaped bud to a closed, 
Ω-shaped bud. This instability is accompanied by a large energy barrier,
 which could cause a developing endocytic pit to stall if the binding 
energy of additional coat is insufficient to overcome this barrier. 
Similar results were found for a coat of constant area in which the 
spontaneous curvature progressively increases. Additionally, we found 
that a pulling force on the bud, simulating a force from actin 
polymerization, is sufficient to drive a transition from an open to 
closed bud, overcoming the energy barrier opposing this transition.</div><div style="font-size:12.8px"><span style="font-size:12.8px"><br></span></div><b style="font-size:12.8px">HOST</b><span style="font-size:12.8px">: Dr. </span><span style="font-size:12.8px">Jose Castillo</span></div>
<br>_______________________________________________<br>
SDSU Computational Science Research Center<br>
Mailing List<br></div>