<div dir="ltr"><div class="gmail_quote"><br><br><div dir="ltr"><b style="font-size:12.8px">DATE</b><span style="font-size:12.8px">: <span><span>Friday, April 8th, 2016</span></span></span><b style="font-size:12.8px"><br><br></b><div style="font-size:12.8px"><b style="font-size:12.8px">TITLE</b><span style="font-size:12.8px">: </span>Lagrangian Coherent Structures and DNS with Discontinuous Galerkin methods</div><div><br style="font-size:12.8px"><b style="font-size:12.8px">TIME</b><span style="font-size:12.8px">: </span><span style="font-size:12.8px"><span><span>3:30 PM</span></span></span><br style="font-size:12.8px"><br style="font-size:12.8px"><b style="font-size:12.8px">LOCATION</b><span style="font-size:12.8px">: GMCS 214</span><br style="font-size:12.8px"><br style="font-size:12.8px"><b style="font-size:12.8px">SPEAKER</b><span style="font-size:12.8px">: </span><span style="color:rgb(0,0,0);line-height:21px"><font face="arial, helvetica, sans-serif">Dr. Daniel Nelson. Senior Research and Development Engineer at Flowserve Corporation.</font></span></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><b style="font-size:12.8px">ABSTRACT</b><span style="font-size:12.8px">: </span> <span style="font-size:12.8px">High-fidelity numerical tools based on high-order Discontinuous-Galerkin (DG) methods and Lagrangian Coherent Structure (LCS) theory for the study of separated, vortex-dominated flows are discussed. A numerical framework is presented that couples a higher-order DG-DNS solver with time-dependent analysis of the flow through LCS . At heart of this framework lies an algorithm that computes Finite-Time Lyapunov Exponent (FTLE) fields simultaneously with DNS and with spectral accuracy. The algorithm is applied to investigate the role of LCS in fluid mixing in the unstable bottom boundary layer under a solitary surface wave mimicked by a soliton-like pressure gradient driven flow in an oscillating water tunnel. The development of two and three-dimensional LCS fields for the unsteady separated flow over a NACA 65-(1)412 airfoil at a free-stream Reynolds number of Re=20,000 is also discussed.</span></div><div style="font-size:12.8px"><span style="font-size:12.8px"><br></span></div><b style="font-size:12.8px">HOST</b><span style="font-size:12.8px">: </span><span style="font-size:12.8px">Dr. Satchi Venkataraman</span><br></div>
<br>_______________________________________________<br>
SDSU Computational Science Research Center<br>
Mailing List<br></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature">
<p>Jose E. Castillo Ph.D.</p><p>Director / Professor </p>
<p>Computational Science Research Center</p>
<p>5500 Campanile Dr</p>
<p>San Diego State University</p>
<p>San Diego CA 92182-1245</p>
<p>619 5947205/3430, Fax 619-594-2459</p><p> <a href="http://www.csrc.sdsu.edu/mimetic-book/" target="_blank">http://www.csrc.sdsu.edu/mimetic-book/</a></p></div>
</div>