<div dir="ltr"><br><br><div class="gmail_quote"><br><div dir="ltr"><p><font face="arial, helvetica, sans-serif">DATE: Friday, October 4th, 2013</font></p><p><font face="arial, helvetica, sans-serif">TITLE: <span style="line-height:21px">Stable, High Order Accurate Adaptive Schemes for Studying the Earthquake Cycle</span></font></p>

<p><font face="arial, helvetica, sans-serif">TIME: <span><span>3:30 PM</span></span><br>LOCATION: GMCS 214</font></p><p><font face="arial, helvetica, sans-serif">SPEAKER: Brittany Erickson.<span style="line-height:21px"> </span><span style="line-height:21px">Dept. of Geological Sciences at San Diego State University</span></font></p>

<p><font face="arial, helvetica, sans-serif"><font color="#000000"><span style="line-height:21px">Many geophysical phenomena are characterized by properties that evolve over a wide range of scales which introduce difficulties when attempting to model these features in one computational method. I will discuss two techniques for handling the varying time scales in earthquake cycle modeling where extremely long inter-seismic periods are interspersed with abrupt, short periods of dynamic rupture. The first technique is our development of a high-order finite difference method for the elastic wave equation that is able to efficiently handle varying temporal scales in a single, stand-alone framework. Through the use of summation-by-parts (SBP) operators and weak enforcement of boundary conditions we derive a provably stable discretization. Time stepping is achieved through an implicit method which allows us to take large time steps during the intermittent period between earthquakes and adapts appropriately to fully resolve rupture. The second technique to handle the varying time scales in earthquake cycle modeling is neglect inertia and apply an explicit time-stepping method. For this framework we have developed an efficient time-stepping method to solve the equations of static-elasticity with time-dependent boundary conditions that reflect slow, tectonic loading. We apply this method to understand how sedimentary basins, similar to those found in Southern California, affect the earthquake cycle.</span></font><br>

</font></p><p><font face="arial, helvetica, sans-serif">HOST: Dr. Jose Castillo<br></font></p><p><font face="arial, helvetica, sans-serif">For future events, please visit our website at:</font></p><p><a href="http://www.csrc.sdsu.edu/colloquium.html" target="_blank"><font face="arial, helvetica, sans-serif">http://www.csrc.sdsu.edu/colloquium.html</font></a></p>


</div>
</div><br><br clear="all"><div><br></div>-- <br>







<p>Jose E. Castillo  Ph.D.</p><p>Director / Professor </p>
<p>Computational Science Research Center</p>
<p>5500 Campanile Dr</p>
<p>San Diego State University</p>
<p>San Diego CA 92182-1245</p>
<p>619 5947205/3430, Fax 619-594-2459</p><p> <a href="http://www.csrc.sdsu.edu/mimetic-book/" target="_blank">http://www.csrc.sdsu.edu/mimetic-book/</a></p>
</div>
<br />-- 
<br />This message has been scanned for viruses and
<br />dangerous content by
<a href="http://www.mailscanner.info/"><b>MailScanner</b></a>, and is
<br />believed to be clean.