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Summary

This paper introduces the orthogonal rational approximation (ORA) algorithm

for rational function approximation of transfer functions, based on data avail-

able from simulations or measurements. A rational function allows integration

of such data in transient solvers for analysis of high-frequency circuits. In

rational function approximation, the unknown denominator polynomial of the

model results in a nonlinear problem, which can be replaced with successive

solutions of linearized problems following the Sanathanan–Koerner
(SK) iteration. An orthogonal basis can be obtained based on Arnoldi resulting

in a stabilized SK iteration. We present an extension of the stabilized SK, called

ORA, which ensures real polynomial coefficients and stable poles for

realizability of electrical networks. We also introduce an efficient implementa-

tion of ORA for multiport networks based on a block QR decomposition.
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1 | INTRODUCTION

Rational function approximations find applications in many areas including macromodeling of high-frequency
circuits,1 model order reduction for controller design,2 interpolation and extrapolation of system responses,3 surrogate
models for high-energy physics,4 and approximation of elementary mathematical functions.5

Electromagnetic modeling of microelectronics packaging is a large field that benefits from accurate rational function
approximations. Slow-down of Moore's law and economical concerns of yield are pushing the semiconductor industry
toward heterogeneous integration, where multiple dies are interconnected through an advanced chip package, resulting
in a system-in-package (SiP). Heterogeneous integration allows a “more-than-Moore” approach that enables cutting-
edge computing.6–10 In such advanced packaging, the interconnect parasitics can no longer be modeled using isolated
circuit models available in closed-form11,12 requiring blackbox models for time-domain circuit simulation of complex
electromagnetic systems as shown in Figure 1. Their description is however generally available as scattering parameters
obtained from simulations or measurements. An intermediate step in generating an equivalent circuit model is a ratio-
nal function approximation of this tabulated data.13–16 Available methods for rational transfer function approximation
include the widely popular vector fitting,1 Loewner framework,17 Sanathanan–Koerner (SK) iteration,18 and AAA
(adaptive Antoulas–Anderson).19–22
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Vector fitting is related to SK iteration.23 The partial fractions basis used in vector fitting and the iterative pole relo-
cation has resulted in a robust method with wide range of successful applications. The implementation of SK iteration
based on a monomial basis, on the other hand, becomes severely ill-conditioned due to two major reasons: the presence
of Vandermonde matrices, and the weighting introduced by multiplication with the denominator from the previous
iteration. One remedy to improve the conditioning of the method is to use orthogonal polynomials such as Chebyshev
polynomials,24 referred to as generalized SK iteration,25 and to properly scale the frequency variable. An orthogonal
basis can also be generated on-the-fly at arbitrary frequency points using Vandermonde with Arnoldi.26 Similar
approaches with orthogonal polynomial bases have also been studied for rational function approximation.4,27–30 A solu-
tion to address the second major source of ill-conditioning due to the weighting is introduced in the stabilized SK
iteration.5

A vector fitting method based on an orthogonal basis of partial fractions is also available.31,32 Our method is not
based on a partial fractions basis; therefore, it is numerically different, and we argue that it is simpler, especially in
enforcing real coefficients for the polynomials. An advantage of our method is its flexibility to start the SK iteration with
an arbitrary denominator polynomial in addition to the usual selection of initial poles in vector fitting. This would for
example allow to start the iteration with an initial choice of a denominator polynomial for numerical stability.33 It is
also possible to fit rational functions with a relative degree greater than 1.

Using an orthogonal polynomial basis has been studied for rational function approximation before,4,27–30 where the
coefficients of the orthogonal polynomial basis can be obtained using a three-term recurrence relation. We emphasize
that an orthogonal basis is needed for the rational functions and not merely the polynomials. The improvement in accu-
racy using orthogonal rational functions rather than orthogonal polynomials can be dramatic as we will demonstrate in
the numerical results.

Orthogonal rational bases have been used in system identification before, mostly for discrete-time systems,32,34,35

including approximations with real coefficients.36 The rational Arnoldi decomposition by Ruhe37 has also been success-
fully used to solve more general problems such as approximation of matrix functions or eigenvalues.38 In particular, the
RKFIT algorithm39 is also based on an orthogonal rational basis to solve the rational approximation problem. Our
method generates the orthogonal rational basis using a regular Arnoldi (or Lanczos) algorithm (unlike RKFIT that uses
the rational Arnoldi decomposition algorithm), and it includes an efficient multiport implementation. Therefore, we
expect a similar accuracy between ORA and RKFIT, whereas our method is expected to be faster.

In prior work, we have compared both polynomial and rational approximation methods for interpolation and least
squares problems of scalar functions with no consideration on stability.40 In this paper, we address the approximation
problem of multiport networks with rational functions having real polynomial coefficients and stable poles. We extend
the Arnoldi iteration method for calculating an orthogonal basis for the Vandermonde matrix26 to ensure real coeffi-
cients and integrate it in the stabilized SK iteration.5 We extend this formulation to ensure stable poles and introduce
an efficient methodology for multiport networks. The resulting orthogonal rational approximation (ORA) method is
suitable for approximation of transfer functions with stable poles from tabulated data of multiport network parameters.

2 | RATIONAL APPROXIMATION OF TRANSFER FUNCTIONS

When performing a network parameter approximation using a rational function, the goal is a transfer function
expressed as a ratio of two polynomials

FIGURE 1 Time-domain circuit simulation for signal and power integrity design of a system in package (SiP) requires a blackbox

equivalent circuit model [Colour figure can be viewed at wileyonlinelibrary.com]
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nðsÞ
dðsÞ ¼

Pn
i¼0ais

iPd
i¼0bis

i
: ð1Þ

Assume that m data samples f k are provided at frequency points sk ¼ jωk. A least squares solution is desired that
minimizes the residuals nðskÞ=dðskÞ� f k at the provided frequency points. This problem is related to model order reduc-
tion (MOR) techniques15,41 such as asymptotic waveform evaluation (AWE) or passive reduced-order interconnect mac-
romodeling algorithm (PRIMA). For rational approximation, we start with measured or simulated data only, whereas
MOR requires that there is an existing model with large order. It is possible to sample an existing model and use ratio-
nal approximation of the sampled data as an MOR method; however, in the following, we assume that only the data
are available.

The rational function can be normalized by fixing one of its coefficients such as b0 ¼ 1. Another option is fixing the
norm of the unknown coefficients resulting in the least-squares problem addressed in this paper

minimize
a,b

Xm
k¼1

����nðskÞdðskÞ� f k

����
2

,s:t:

����
���� a

b

� �����
����¼ 1, ð2Þ

which is typically an overdetermined problem, where there are more frequency points than the number of coefficients.
This is however a nonlinear problem for the general case of unknown coefficients of the denominator polynomial. The
monomial basis in (2) also results in an ill-conditioned problem and even switching to an orthogonal polynomial basis
does not result in accurate approximations for large size problems. To overcome the numerical conditioning problem, a
stabilized SK iteration5 has been proposed, which however does not guarantee real coefficients or stable poles. In this
paper, we introduce the ORA method that satisfies these properties, which are needed for rational function approxima-
tion of realizable networks. ORA can also efficiently find rational approximations of multi-port networks (where the
coefficients ai are matrices).

3 | FITTING THE NUMERATOR POLYNOMIAL

To introduce ORA, we first discuss polynomial approximation, followed by rational approximation with known denom-
inator polynomial.

3.1 | Orthogonal polynomial basis with real coefficients

If dðsÞ¼ 1, the problem reduces to a polynomial approximation. In this case, the Vandermonde matrix A can be used to
solve the coefficients a of nðsÞ that approximates the data in the least-squares sense

Aa≈ f : ð3Þ

The Vandermonde matrix is of size m�ðnþ1Þ and given as A¼ ½1ss2…sn�, where s¼ðs1,s2,…,smÞT is the vector of
frequency points. An orthogonal basis for A can be found with the A¼QR decomposition, which however results in an
ill-conditioned least squares problem in (3) for high values of n.

The Arnoldi iteration provides the same matrix Q with orthogonal columns ½q0q1q2…qn�, with the advantage that
the ill-conditioned matrix A (and R) is never actually formed.26 It can be observed that the matrix A is equivalent to

A¼ ½q0Sq0S2q0…Snq0�, ð4Þ

where the starting polynomial is q0 ¼ð1,1,…,1ÞT and S¼ diagðsÞ. The Arnoldi iteration is based on the application of
Gram-Schmidt (GS) orthogonalization on the columns of A in sequence. At step i, the vector Sqi�1 is orthogonalized
against the previous columns ½q0q1q2…qi�1�. Each column is chosen to have a norm of

ffiffiffiffi
m

p
, to be consistent with the
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norm of q0. The Arnoldi iteration also provides an ðnþ1Þ�n upper Hessenberg matrix H that includes the coefficients
used in orthogonalization process such that

SQ� ¼QH, ð5Þ

where Q� is obtained by removing the last column of Q. The polynomial coefficients a are never calculated; instead,
the least-squares problem is solved using transformed coefficients c as

Qc≈ f : ð6Þ

Generation of orthogonal polynomials for data fitting has been known for many decades (see, e.g., Forsythe42). More
recently, the evaluation of such a fitted polynomial (at arbitrary frequency points) has been streamlined26 without
explicitly using the three-term recurrence coefficients. The key insight is the use of H to that purpose. For evaluating
the polynomial at another set of frequencies Ŝ, the same operations based on the previously obtained H are applied to
simply obtain the matrix Q̂

ŜQ̂� ¼ Q̂H: ð7Þ

The data at this new set of frequencies can then be obtained as Q̂c.
For realizability of electrical networks, transfer functions with real polynomial coefficients are needed. To ensure

real coefficients, one option is to enforce conjugate symmetry by fitting the complex conjugate responses on both sides
of the frequency axis,27,28 which however unnecessarily uses a complex-valued Arnoldi iteration. We present an alterna-
tive method that uses real arithmetic throughout to ensure real coefficients by using an updated initial vector and fre-
quency matrix. For the polynomial fitting example, the vector of coefficients a in (3) can be enforced to be real by
stacking the real and imaginary parts of A¼A0 þ jA00 and f ¼ f 0 þ jf 00 as

A0

A00

� �
a≈

f 0

f 00

� �
: ð8Þ

We can now observe that the stacked matrix is equivalent to

A0

A00

� �
¼ ½qXqX2q…Xnq�, ð9Þ

where

q¼ q00
q000

� �
,X ¼ S0 �S00

S00 S0

� �
, ð10Þ

and the real and imaginary parts of S are given as S¼ S0 þ jS00. The obtained orthogonal basis would also be in stacked
form as

Q0

Q00

� �
, ð11Þ

where Q¼Q0 þ jQ00. For the usual case of a pure imaginary s vector, X becomes skew symmetric (it has zeros on its
diagonal), and a Lanczos procedure equivalent to Arnoldi can be obtained.43 We use the Lanczos procedure for
skew-symmetric matrices in this paper. Of particular interest are the zeroes of the orthogonal polynomial, which can be
obtained in general from the comrade matrix44 or the state-space approach29 as the eigenvalues of the matrix

4 MA AND ENGIN
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HT
n �hecT0:n�1=cn, ð12Þ

where Hn is an n�n matrix obtained from H by removing its last row, h is the bottom right element of H,e is a vector
of n�1 zeros followed by a 1 as its last element, and c0:n�1 is the coefficient vector except for the last element cn. Since
this matrix is real, the obtained zeros are either real or come in complex conjugate pairs.

3.2 | Known denominator polynomial

As the next special case, assume that there is an arbitrary denominator polynomial dðsÞ, but its value is known at the m
frequency points given by the vector d¼ 1:=½dðs1Þ,dðs2Þ,…,dðsmÞ�T , where the division is element-wise. Assume also that
d is normalized to have a norm of

ffiffiffiffi
m

p
. For rational approximation, this case of known denominator would correspond

to obtaining the numerator polynomial after the poles have been extracted. This results in the least squares problem of

DAa≈ f , ð13Þ

where D is an m�m diagonal matrix given as D¼ diagðdÞ. Using a polynomial orthogonal basis Qp as discussed yields

DQpĉ≈ f , ð14Þ

which however can still become ill-conditioned due to the multiplication with D. The stabilization of SK iteration can
be obtained by addressing this problem through generating an orthogonal basis for DA instead.5 For a rational function
with real coefficients, this can simply be achieved by changing the initial vector in (10) to

q¼ d0

d00

� �
ð15Þ

to calculate an orthogonal basis Q¼Q0 þ jQ00 for the rational function and finding the least squares solution as
usual from

Q0

Q00

� �
c≈

f 0

f 00

� �
: ð16Þ

At this point, if it is desired to calculate the numerator polynomial only, the straightforward option is to use D�1Qc.
However, this is only applicable at the original frequency points. A more powerful alternative is to use the H matrix to
obtain Q̂p at arbitrary set of frequency points and calculating Q̂pc. Note that Q̂p may not be orthogonal even at the
original frequency points.

In this section, we have introduced how selecting the initial vector of the Arnoldi iteration from a known denomina-
tor polynomial allows us to obtain orthogonal rational functions with real coefficients. The algorithm is implemented
in the Matlab function numfit as shown in Figure 2. Next, we integrate these results in the SK iteration to obtain the
denominator polynomial as well.

4 | FITTING THE DENOMINATOR POLYNOMIAL

A simple linearized version of the rational approximation problem33,45 can be formulated as

minimize
a,b

Xm
k¼1

jnðskÞ� f kdðskÞj2,s:t:
����
���� a

b

� �����
����¼ 1, ð17Þ

whose solution can be obtained from a singular value decomposition (SVD). This naive method may not provide the
correct solution due to the linearization. A well-known method to compensate for this inaccuracy is the SK iteration.

MA AND ENGIN 5
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The SK iteration can be started with the linearized least squares problem of (17) to obtain an initial solution for the
denominator polynomial dpreðsÞ. In order to approach the correct norm, the following problem is then solved to obtain
updated nðsÞ and dðsÞ polynomials:

minimize
a,b

Xm
k¼1

���� nðskÞ
dpreðskÞ� f k

dðskÞ
dpreðskÞ

����
2

, ð18Þ

with a suitable nontriviality constraint that we will discuss at the end of this section. This process can be continued iter-
atively until dpreðsÞ≈ dðsÞ so the correct norm is recovered if the algorithm converges.

The ORA is based on generating the orthogonal rational basis Qn for nðsÞ=dpreðsÞ and Qd for dðsÞ=dpreðsÞ. If the
degree of the numerator and denominator polynomials are equivalent, Qn ¼Qd; otherwise one can be obtained from
the other by removing its last columns depending on the difference in degree. Assuming the diagonal matrix F contains
the data values as F¼ diagðf 1,f 2,…,f mÞ, the least squares problem can be expressed as

Q0
n �ðFQdÞ0

Q00
n �ðFQdÞ00

" #
g

c

� �
≈ 0: ð19Þ

At each step of the iteration, the roots of dpre are calculated and any unstable poles are flipped to obtain a set of sta-
ble poles pi similar to the process in vector fitting. The stable denominator polynomial is then calculated from
dpreðskÞ¼

Qd
i¼1wðsk�piÞ, using a roughly chosen weight w to prevent overflow.

As for preventing the nontrivial solution, the straightforward choice is enforcing that the solution vector in (19) has
a norm of 1. The solution is then obtained through the SVD of the matrix in (19).

FIGURE 2 Matlab implementation of (16) that fits the numerator with real coefficients from data on the imaginary axis and prescribed

denominator [Colour figure can be viewed at wileyonlinelibrary.com]
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An alternative is enforcing that condition on only the denominator coefficients c and not having any constraints on
g. In that case, the denominator polynomial with the coefficients vector c can be calculated first, followed by calculating
the numerator coefficients g in a second step. Assume we obtain a QR decomposition of the matrix in (19), where the
submatrices of R are given as R11,R12,R22. The least squares problem with this alternative constraint can then be
expressed as

R11 R12

0 R22

� �
g

c

� �
≈ 0,s:t:jjcjj ¼ 1: ð20Þ

The solution for this homogeneous equation is given by the eigenvector corresponding to the smallest eigenvalue of
RT
22R22.

46 This is equivalent to calculating the final right singular vector of R22 using SVD.

4.1 | Multiport networks

For a multiport network, a common-pole model can be obtained. Assume that N elements of a network matrix will be
approximated using the data set F1,F2,…,FN . Since all N rational functions will be using the same denominator polyno-
mial, we can fit them simultaneously as

Q0
n 0 … 0 �ðF1QdÞ0

Q00
n 0 … 0 �ðF1QdÞ00
0 Q0

n … 0 �ðF2QdÞ0
0 Q00

n … 0 �ðF2QdÞ00

..

. . .
. . .

. ..
. ..

.

0 0 … Q0
n �ðFNQdÞ0

0 0 … Q00
n �ðFNQdÞ00

2
6666666666664

3
7777777777775

g1
g2

..

.

gN
c

2
66666664

3
77777775
≈ 0: ð21Þ

To obtain a fast method for multiport networks, we can enforce jjcjj ¼ 1 as the nontriviality constraint and obtain
the denominator first. This method is similar to the handling of multiport networks in the fast implementation of the
vector fitting algorithm47 and the parametric macromodeling approach.48 The least squares problem then reduces to

R1
22

R2
22

..

.

RN
22

2
66664

3
77775c≈ 0,s:t:jjcjj ¼ 1: ð22Þ

We improve the efficiency further by using a block QR decomposition for calculating the R22 terms.49 Consider the
matrix in (19):

Q1B½ � ¼ Q0
n �ðFQdÞ0

Q00
n �ðFQdÞ00

" #
: ð23Þ

Since Q1 is already orthogonal, the thin QR decomposition would be in the form of

Q1B½ � ¼ Q1Q2½ � R11 R12

0 R22

� �
: ð24Þ

Multiplying both sides from the left with QT
1 yields QT

1B¼mR12, where the factor of m comes from our choice of
having orthogonal columns with a norm of

ffiffiffiffi
m

p
. We can now calculate R22 from the QR decomposition of a smaller

matrix B�Q1Q
T
1B=m¼Q2R22. This is an additional advantage for ORA. The orthogonal rational functions not only

improve the numerical conditioning but also speed up the computation for multi-port networks.
The implementation of denominator fitting in ORA is shown in Figure 3.

MA AND ENGIN 7
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5 | ORA

The SK iteration using the numfit and denfit functions is implemented in the ora function as shown in Figure 4.
Initially denfit is called with a 1 vector for the denominator. At each step, denfit is called with the denominator
from the previous iteration. We note that the SK iteration in general is not guaranteed to find the optimum solution. If
necessary, additional nonlinear optimization algorithms can be applied to find the local minimum starting with the
solution obtained from the SK iteration.5

FIGURE 3 Matlab implementation of (22) that updates the denominator [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Matlab implementation of ORA [Colour figure can be viewed at wileyonlinelibrary.com]

8 MA AND ENGIN
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5.1 | Integration in circuit solvers

If needed, generating a transfer function in pole-residue form is straightforward. Once the denominator polynomial is
obtained, the poles of the rational function are readily available from the eigenvalues of (12). The residues can be fit in
a similar way to the vector fitting residue identification process in a robust way. Alternatively, a direct state-space repre-
sentation can be obtained from the coefficients of orthogonal polynomials for the case ðm<nÞ.29 This can be extended
for the improper rational function ðm¼nÞ case as

A¼HT
n �hecT0:n�1=cn

B¼ he=cn
C¼ðG0G1…Gn�1Þ�GncT0:n�1=cn
D¼Gn=cn,

ð25Þ

where ðG0G1…GnÞ¼ ðg1g2…gNÞT . After the denominator or the poles are extracted using iteratively calling denfit, a
final call to numfit can provide this state-space model for improper rational functions. Note also how the zeroes of an
orthogonal polynomial in (12) are calculated from the eigenvalues of A.

6 | NUMERICAL EXAMPLES

The first example we consider is the ISS 1R module.2 The data are provided from a state-space model of order 260, so it
does not include any noise. Figure 5A shows the original and fitted data for a model using 70 poles. We have assumed
that the numerator and denominator polynomials have the same degree for the examples in this paper and have used
20 iterations.

Figure 5B shows a comparison of the rms error as a function of number of poles for the data in Figure 5. We selected
the best fit among all the 20 iterations in this figure and started the SK iteration in ORA with dðsÞ¼ 1. SK iteration
based on merely an orthogonal polynomial basis becomes severely ill-conditioned due to the division by the denomina-
tor5 as confirmed in Figure 5B. This may be the reason for the poor accuracy observed in earlier implementations of the
Arnoldi iteration for rational function approximation27 and why the method has so far not found widespread popular-
ity. A well-conditioned method is recovered using the orthogonal rational function basis in ORA.

The second example we consider is the noisy data of a stripline measured up to 110 GHz using 5001 frequency
points on a vector network analyzer. The first row of the measured 2-port scattering parameters is approximated
using 50 poles in ORA as shown in Figure 6A. The proposed ORA method settles down to a lower residual error

FIGURE 5 (A) Original and fitted data obtained using 70 poles in ORA for the ISS 1R module.2 The error in magnitude is shown with

light gray color. (B) rms error from the best fit among 20 iterations. SK with a merely orthogonal polynomial basis does not provide a well

conditioned method [Colour figure can be viewed at wileyonlinelibrary.com]
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compared to the vector fitting method (vectfit3 implementation on Matlab) as shown in Figure 6B as the number of
poles increases.

As an example application of ORA for high-speed circuits, the eye diagram through this stripline is simulated. One
option for such transient analysis is exporting a circuit model synthesized from the rational function.50 This allows tran-
sient simulation of high-speed interconnects in the presence of nonlinear circuits. For this example, the eye diagram
was generated based on time-domain response of the rational function using Matlab's timeresp function. A 20-Gbps
input signal is used in the simulation as shown in Figure 7. The rational function was generated based on the measured
transfer function using 34 poles.

The third example is a common-mode filter measured up to 40 GHz using 1001 frequency points. The upper trian-
gular portion of the measured 4-port scattering matrix is approximated. Figure 8 shows good fit with a relatively flat
residual using 40 poles.

FIGURE 6 (A) ORA using 50 poles for the first row of the S-parameters of a stripline measured at 5001 frequency points. (B) rms error

settles down to a lower level compared to vector fitting [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 The eye diagram through the measured stripline in Figure 6. A 20-Gbps input signal is used in the simulation. The rational

function for time-domain simulation was generated based on the measured transfer function using 34 poles [Colour figure can be viewed at

wileyonlinelibrary.com]
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The final example is a cavity resonator simulated at ten ports using a full-wave simulator. The upper triangular por-
tion of the scattering parameters (55 elements total) are approximated using ORA as shown in Figure 9A. For this
example, the proposed ORA method was also able to find solutions with lower residual error compared to the vector
fitting method. ORA and RKFIT provided similar accuracy. A complete convergence analysis is not yet available for
ORA, vector fitting, or RKFIT.39 The residual error does not monotonously decrease with the number iterations or the
number of poles. Therefore, in Figure 9B, the best approximations among all 20 iterations were chosen for each model
order. The total run time for Figure 9B on a laptop with Intel i7 processor was fastest with 151s for ORA, 282s for
RKFIT, and 325s for vector fitting.

7 | CONCLUSIONS

This paper introduced the ORA method for rational function approximation. The method is an extension of the recently
developed Vandermonde with Arnoldi and stabilized SK methods to ensure real polynomial coefficients and stable

FIGURE 9 (A) ORA using 100 poles for the upper triangular portion of the S-parameters of a 10-port cavity resonator simulated at

600 frequency points. (B) ORA was able to find solutions with lower rms error compared to vector fitting as the model order increases

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Approximation of the upper triangular portion of the 4-port scattering matrix of a common-mode filter measured at 1001

frequency points. Good fit is obtained using 40 common poles [Colour figure can be viewed at wileyonlinelibrary.com]
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poles for realizability of the rational functions. The new method is also presented for multiport networks and applied
on rational function approximations of measured or simulated scattering parameters. For the considered examples,
ORA showed a trend to find solutions with better accuracy compared to vector fitting as the model order is increased,
where a 10-port model approximation also showed a speed up of approximately two times. The presented method does
not require an initial selection of poles and is well-conditioned due to the orthogonalization of rational functions in the
SK iteration.
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