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Passive Scalar Function Approximation
Using SOS Polynomials

Arif Ege Engin , Member, IEEE

Abstract—Signal and power integrity design in the time domain
requires equivalent circuit models for interconnects and packages,
whose descriptions may only be available as tabulated impedance
or admittance parameters. Accurate models for these components
should maintain their physical properties including causality, sta-
bility, and passivity. Even though a heuristic approach, pole flipping
(i.e., changing the sign of the real part of an unstable pole) has
proven to be sufficiently accurate for many applications, resulting
in models with ensured causality and stability. In this article, we
address the problem of generating passive scalar models, such as
driving point impedances or admittances, based on an existing
causal, stable, but nonpassive model. Our approach is based on
using sum-of-squares (SOS) polynomials and results in a convex
optimization problem, hence a global optimum is obtained. We
obtain approximations through two distinct SOS algorithms: a
coefficient and a sampling-based method. We also present a simple
passivity test for such functions based on calculating the roots of
numerator and denominator polynomials, which provides an intu-
itive link among existing approaches based on solving an eigenvalue
problem.

Index Terms—Causality, macromodeling, passivity, rational
function, stability, sum-of-squares (SOS), transfer function, vector
fitting.

I. INTRODUCTION

MACROMODELING of passive networks from tabulated
simulated or measured data is a critical step in sig-

nal and power integrity design. Macromodeling involves ap-
proximating the given data with a rational transfer function,
which can then be converted to an equivalent circuit model for
time-domain simulation. Available methods for rational trans-
fer function approximation include vector fitting [1], Loewner
framework [2], Sanathanan–Koerner iteration [3], and adaptive
Antoulas–Anderson (AAA) [4], [5]. For signal and power in-
tegrity analysis, the vector fitting algorithm in particular has been
applied with success on many applications. An alternative to
macromodeling is using the raw data in time-domain simulation
based on a convolution approach [6]. The raw data may, however,
be flawed with causality violations, which may be difficult to
identify and fix [7].
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In this article, we address the problem of generating passive
scalar models for driving point impedances or admittances,
based on an existing causal, stable, but nonpassive model. Even
though a stable rational function approximation may provide
an excellent fit to the provided passive data, it may still be
nonpassive due to passivity violations outside of the frequency
range of approximation or even between consecutive frequency
points of approximation. Moreover, measured or simulated data
may itself be nonpassive due to measurement noise or modeling
issues. A passivity violation occurs in a macromodel when
the real part of such a rational function becomes negative. To
correct for passivity violations, existing methods available to
enforce passivity of the model include iterative perturbation of
residues [8] or Hamiltonian matrices [9], [10], and fitting using
positive fractions or linear matrix inequalities [11]–[13].

We start with presenting a simple passivity test for such scalar
rational functions based on calculating the roots of numerator
and denominator polynomials, which can be more intuitive
than the common eigenvalue-problem-based approach. Based
on this simple test, we introduce our approach for ensuring
passivity based on using sum-of-squares (SOS) polynomials. We
fit the residues to obtain a passive model by solving a convex
optimization problem, hence a global optimum can be obtained
after convergence.

II. PASSIVITY TEST FOR SCALAR FUNCTIONS BASED ON

THEIR ROOTS

Assume that the scalar transfer function for a driving-point
impedance or admittance is given as a rational function or in an
equivalent pole-residue form as

r(s) =

∑M
i=0 ais

i∑N
i=0 bis

i
= d+ se+

N∑
i=0

ki
s− pi

. (1)

This rational function will be passive if the following condi-
tions hold [14].

1) The coefficients ai, bi are real (i.e., r∗(s) = r(s∗)).
2) All poles pi are stable, that is they do not have positive real

parts. If there are any pure imaginary poles, they should be
simple and have positive residues (including the residue e
of the pole at infinity).

3) The real part of the rational function is nonnegative at all
real frequencies s = jω (i.e., r(jω) + r∗(jω) ≥ 0).

Standard macromodeling algorithms can ensure the first two
conditions by enforcing real coefficients and pole flipping.
Considering that possible poles at 0 and at infinity should be
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simple, the second requirement also limits the degree of the
polynomials such that |N −M | ≤ 1. It is not possible to test
for the third condition by a frequency sweep, since passivity
violations between or outside the range of tested frequency
samples will not be detected.

The even part re(s) = (r(s) + r(−s))/2 of r(s) can be ob-
tained from its pole-residue form as

re(s) = d+
1

2

N∑
i=0

(
ki

s− pi
+

ki
−s− pi

)

= d+

N∑
i=0

kipi
s2 − p2i

(2)

which allows to obtain the real part of r(jω) from re(s) at s =
jω as

r(jω) + r∗(jω)
2

= d+

N∑
i=0

−kipi
ω2 + p2i

=
n(ω2)

d(ω2)
. (3)

Theorem 1: A scalar rational function with real coefficients
and stable poles (including simple pure imaginary poles with
positive residues) will be passive if the real part numerator poly-
nomialn(ω2) in (3) has no positive real roots of odd multiplicity.
The square root of any such root provides a frequency point
where a passivity violation begins or ends.

Proof: We do not need to consider any pure imaginary poles
in the summation of (3) as any such pole has a real residue
and does not contribute to the real part of r(jω). We can then
observe that the denominator polynomial does not cross the
ω-axis (i.e., it has no real roots), therefore d(ω2) > 0. For the
rational function to be passive, then the numerator polynomial
should be nonnegative, or n(ω2) ≥ 0 for all ω. This allows us to
check for passivity by calculating the roots of n(ω2). The real
part of r(jω) would change sign at any positive real root with
odd multiplicity, indicating a frequency point where a passivity
violation begins or ends. �

As an example consider the transfer function

r(s) = 0.8 +
−1 + 2j

s− (−1− j)
+

−1− 2j

s− (−1 + j)
+

1

s− (−1) .
(4)

The polynomial n(ω2) has two real roots at ω = 1.61, 2. This
rational function is not passive since its real part will change
sign at these two frequencies.

A. Relationship to State-Space Passivity Tests

Next, we discuss the relationship of the presented method to
passivity tests based on the state-space form of the network given
as

ẋ = Ax+ bu (5)

y = cTx+ du (6)

which corresponds to the transfer function r(s) = cT (sI −
A)−1b+ d. The third passivity condition can be replaced with
the condition that the test matrix T , obtained by

T = (bd−1cT −A)A (7)

should have no positive-real eigenvalues. If it does, then the
square-root of the positive-real eigenvalues are the frequencies
where passivity violations start or end [15]. We can observe
that the T matrix indeed gives the roots of n(ω2), based on the
eigenvalue method for calculating the zeros of a rational function
in pole-residue form as it is used in relaxed vector fitting [16].

This passivity test requires that d is nonzero. For the case with
d = 0, a different test matrix is used in [17]

T̂ = A
[
(1/cTAb)AbcT − I

]
A (8)

which is equivalent to finding the zeros of the real part from the
pole-residue form of (3) when d = 0 [18].

The presented test is intuitive as it is based on finding the
roots of a polynomial only and equivalent to the state-space tests.
This test provides a link between separate passivity tests applied
based on the presence of a constant term d in the pole-residue
form.

III. PASSIVITY TEST USING SOS POLYNOMIALS

Theorem 1 shows that a requirement for passivity is thatn(ω2)
is a positive semidefinite (PSD) polynomial (i.e., n(ω2) ≥ 0 for
all ω.) It is well known that such a univariate polynomial is PSD
if and only if it is a SOS polynomial given by

n(ω2) =
k∑

i=0

mi(ω)
2 (9)

where the degree of each polynomial mi is smaller than or
equal to (N + 1) [19]. For a PSD polynomial, there is always a
decomposition with k + 1 = 2 terms, but in general there may
be multiple possible decompositions.

One way to test whether a univariate polynomial is PSD is
through the Gram matrix Q of the SOS representation

n(ω2) = [ω]TQ[ω], Q � 0 (10)

where Q is a symmetric PSD matrix, and the monomial vector
is given as [ω]T = [1, ω, . . . , ωN+1]. This allows us to solve the
problem using a semidefinite program; a feasible solution for a
PSDQ proves thatn(ω2) is a PSD polynomial. The semidefinite
program searches for a PSDQ subject to the equality constraints
of the polynomial coefficients on both sides of (10) as

nk =
∑

i+j=k

Qij , k = 0, 1, . . . , 2(N + 1) (11)

where n(ω2) =
∑2(N+1)

k=0 nkω
k, and the matrix Q is indexed so

its elements are Qij where i, j = 0, 1, . . . , N + 1.
In (11), all coefficients nk with odd index will be zero since

the polynomial is a function ofω2. We can improve the efficiency
of the semidefinite program by formulating it more precisely as
a search for n(ω2) ≥ 0 for all ω2 ≥ 0, which can be expressed
in terms of two SOS polynomials. More generally, n(ω2) is PSD
for all ω2 ≥ a [20], if and only if it can be expressed as

n(ω2) =

kp∑
i=0

mp
i (ω

2)2 + (ω2 − a)

kr∑
i=0

mr
i (ω

2)2. (12)
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This property allows to reformulate the semidefinite program
using two smaller PSD matrices and expressing all polynomials
as functions of ω2 as

n(ω2) = [ω2]Tp P [ω2]p + ω2[ω2]Tr R[ω2]r

P � 0, R � 0 (13)

where [ω2]Tp = [1, ω2, . . . , ω2p], [ω2]Tr = [1, ω2, . . . , ω2r], P is
a (p+ 1)× (p+ 1) symmetric matrix, and R is a (r + 1)×
(r + 1) symmetric matrix. The size of the matrices depend on
whether N is odd or even. For even N we get p = r = N/2;
whereas for oddN we get p = (N + 1)/2, r = (N + 1)/2− 1.
A similar reduction in size can also be achieved by separating
the even and odd basis polynomials as in [21] that suggests a
significant gain in computational complexity.

IV. APPROXIMATION USING SOS POLYNOMIALS

The advantage of the approach in (13) over state-space based
tests is that now we can solve a semidefinite program in least
squares fitting of the residues of a rational function subject to
its real part being PSD, or with guaranteed passivity. This is a
norm minimization problem with PSD constraints given as

minimize
M∑

m=0

∣∣∣∣∣d+ jωme+

N∑
i=0

ki
jωm − pi

− h(jωm)

∣∣∣∣∣
2

subject to n(ω2) ≥ 0 for ω2 ≥ 0, e ≥ 0 (14)

where h(jωm) is the provided impedance or admittance data at
M + 1 frequency points. In (14), the variables d and e are real
and nonnegative, whereas residues ki associated with complex
poles can be complex but they should come in complex conjugate
pairs. This can be achieved by the well-known modification of
separating the real and imaginary parts of complex residues
in the system matrix as applied in vector fitting [1]. The new
aspect of (14) is the PSD constraint that is formulated as an SOS
problem in (13). The coefficients of n(ω2) can be obtained with
an affine transformation from the variables d, ki, (e.g., using an
algorithm similar to the residue function in MATLAB) so we
obtain a convex minimization problem, hence a global optimum
can be obtained after convergence. We solve this problem using
the CVX package [22]. This algorithm is summarized in Algo-
rithm 1, which also includes the sampling-based approximation
that we will describe in the next section.

Fig. 1 shows the approximation of the rational function in (4)
sampled at 1001 points with a nonpassive model and a passive
model using SOS polynomials. The nonpassive model provides
an excellent match with an rms error in the order of 10−16;
however, it follows the nonpassive behavior of the original
data. The passive model is obtained solving the semidefinite
program in (14). The markers match the passivity violations as
predicted by the passivity test based on roots. We ran the same
example through the Matrix Fitting Toolbox, which implements
passivity enforcement not only on scalars but also on multi-port
network functions based on the perturbation of residue matrix
eigenvalues [23]. The rms error of the passive model using SOS
polynomials was 0.0190 compared to the higher error of 0.0265

Fig. 1. Approximation of the rational function in (4) sampled at 1001 points
(shown as data in the figure) with a nonpassive model, a passive model using SOS
polynomials, and another passive model using the Matrix Fitting Toolbox [23].
The markers match the passivity violations as predicted by the passivity test
based on roots.

Algorithm 1: Algorithm for Passive Scalar Function Ap-
proximation Using SOS Polynomials.

Input: strictly stable poles pi, data h(jωi) at frequency
points ωi

Output: residue vector k, constant term d, linear term e of
a passive rational function r in (1)

1: k, d, e← min
∑M

i=0 |r(jωi)− h(jωi)|2
subject to e ≥ 0 and the SOS constraint on n(ω2) in (3)
using

2: if coefficient-based optimization then
3: the constraint in (13)
4: else if sampling-based optimization then
5: the constraint in (15)
6: end if

of the perturbation-based approach. The error of the passive
model using SOS polynomials was smaller than the perturbation
approach in all examples discussed in this article, which is
expected as a global minimum can be obtained in our approach
by solving a convex optimization problem.

The numerical conditioning of the problem due to the PSD
constraint in (13) limits its use to low order models that have less
than 10 poles in our tests. This is due to the poor conditioning
of the semidefinite program that involves the coefficients of a
monomial basis in SOS constraints. Next we present a modifica-
tion of this method based on sampling to improve the numerical
conditioning.

V. SAMPLING-BASED APPROXIMATION USING SOS
POLYNOMIALS

One way to avoid working directly with the coefficients of
a monomial basis is to make use of the property that an nth
degree polynomial is uniquely defined by sampling it at n+ 1
points [24], [25]. This brings a great advantage in solving (14)
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as we can remain in a partial-fractions basis without having to
formulate the problem in terms of the monomial coefficients of
n(ω2).

Accordingly, a sampling-based formulation of the SOS con-
straint in (13) can be given as

d(ω2
j )

(
d+

N∑
i=0

−kipi
ω2
j + p2i

)

= [Tj ]
T
p P [Tj ]p + (xj − a)[Tj ]

T
r R[Tj ]r, j = 0, 1, . . . , N + 1

P � 0, R � 0. (15)

We can observe that the first line of (15) is equal to n(ω2)
evaluated at the sampling point ω2 = ω2

j . We have the flexibility
to have a different basis on both sides of this equation as the
equality is in terms of the values and not coefficients. The
right hand side are the samples of a nonnegative polynomial
for ω2 ≥ 0 of the same degree. In the following, we use a scaled
Chebyshev polynomial basis following [26] for the right hand
side given by:

[Tj ]
T
p =

√
2

2p+ 1
[T0(xj)/

√
2, T1(xj), . . . , Tp(xj)] (16)

where Tj are Chebyshev polynomials of the first kind. This basis
has good numerical properties, as it forms an orthonormal basis
when sampled at Chebyshev points of the first kind

xj = cos

(
(j + 1/2)π

N + 2

)
, j = 0, 1, . . . , N + 1. (17)

The frequency variable ω2 on the left hand side is mapped
to the Chebyshev nodes on the right hand side such that ω2 =
0.5((ω2

max − ω2
min)x+ (ω2

max + ω2
min)). As a result, the in-

equality ω2 ≥ 0 is equivalent to (x− a) ≥ 0 in (15), where
a = −(ω2

max + ω2
min)/(ω

2
max − ω2

min).

VI. NUMERICAL EXAMPLES

The first example is a pair of solid power/ground planes that
have been simulated using the finite difference method [27] to
obtain admittance parameters of two symmetrical ports. The
power/ground planes in the simulation are square-shaped with
a length of 4.8 mm on a side, separated by a dielectric having a
dielectric constant of 4, thickness of 100 μm, and loss tangent
of 0.02. Conductors are made of copper with a conductivity
of 5.8× 107 S/m. The two ports are placed on the diagonal, a
quarter of a diagonal away from two opposite corners.

The input admittance data has nonpassive behavior in a small
frequency range. Vector fitting was used to obtain a model with
30 stable poles after five iterations. The result was an excellent
match to the provided data; therefore the outcome was also a
nonpassive model. Next, the fifth iteration was replaced with the
sampling-based SOS approach to obtain a passive model. Fig. 2
shows the comparison of the passive and nonpassive rational
functions with the provided data.

The second example is a cavity resonator. The simulation
is done using the full-wave simulator Sonnet [28] to obtain
the input impedance of the resonator. Vector fitting provided

Fig. 2. (a) Magnitude and (b) zoomed-in real part of the input admittance
of a pair of solid power/ground planes with two ports. Both the passive and
nonpassive models have the same 30 poles. The markers match the passivity
violations as predicted by the passivity test.

20 stable poles; however, the resulting model was nonpassive
for ω > 3.6820× 1011 rad/s. The initial model from sampling-
based SOS method also did not result in a passive model. It
was observed that the PSD constraint on the matrix P was not
fulfilled as it contained a small negative eigenvalue with an
amplitude that was smaller than the next smallest one by an order
of 10−10. This can be attributed to the termination criterion of the
semidefinite program solver due to the floating-point arithmetic.
To overcome this issue, the PSD constraint on P was enforced
as P × 1000 � 0, which resulted in a fully PSD Q and a passive
model that provides an excellent match as shown in Fig. 3.

The final example is a common-mode filter for differential
lines [29]. The measurement is done with a vector network
analyzer to obtain admittance parameters of its four ports. Fig. 4
shows the comparison of the nonpassive model with ten poles
with a passive model having the same poles. The nonpassive
model had an rms error of 4.314, whereas the passive model
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Fig. 3. Magnitude of the input impedance of a cavity resonator. Passivity
violation for the nonpassive model occurs outside the frequency range of fitting
for ω > 3.6820× 1011 rad/s.

had a slightly increased error of 4.316. The nonpassive model
resulted in two frequency bands with passivity violations. The
first band is within the frequency range of provided data as
shown in Fig. 4(b). The second band is outside the data frequency
range as shown in Fig. 4(c). The PSD constraint was enforced
as P × 10 � 0 to correct an initial negative eigenvalue with an
amplitude in the order of 10−9.

A. Numerical Scaling

The numerical scaling is critical in setting up the semidefinite
program. The following points provide a general strategy and
the parameters used in the provided examples.

1) PSD constraints: PSD constraint on a matrix Q can be
checked by ensuring all the eigenvalues are nonnegative.
In some cases, the solver may terminate with eigenval-
ues that are negative but have very small amplitudes.
The extracted model can then have a minimum for its
real part that is negative but close to zero. If this is not
acceptable, modifying the constraint so that P × a � 0
for an a > 1 can help enforce the PSD constraint also on
eigenvalues with small amplitudes. In our tests, choosing
10 ≤ a ≤ 1000was sufficient to obtain a fully PSD matrix
when there were initial small negative eigenvalues.

2) Norm minimization: In standard vector fitting, column
scaling is applied on the system matrix to improve its
condition number in solving the least-squares problem of
fitting the residues [1], which can also be implemented
in our passive modeling approach. In our tests, we simply
normalized the frequency points with respect to the highest
frequency.

3) Equality constraints: In solving the semidefinite pro-
gram, the equality constraints are enforced within a tol-
erance [21]. This is critical as in (15) the equality con-
straints involve multiplication with d(ω2

j ), which can be
very small. We normalized the equality constraints by the
median value of d(ω2

j )hj , where hj is the real part of

Fig. 4. (a) Magnitude and (b) zoomed-in real part of the measured input
admittance of a common-mode filter at one of its four ports. The nonpassive
model resulted in two frequency bands, (b) and (c), with passivity violations as
shown.

the data at frequency ωj , obtained from a simple spline
interpolation.

4) Sampling frequencies: The range for the sampling does
not necessarily need to match the limits of the provided
frequency points. In the given examples, we have used
ω2
min = 0.1, ω2

max = 0.9 (after frequency normalization
as discussed above).
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VII. CONCLUSION

We introduced an intuitive passivity test based on the roots
of the real part transfer function. This test provides a link
between separate passivity tests applied based on the presence
of a constant term in the pole-residue form. Based on this test,
a sampling-based SOS algorithm was introduced for passive
macromodeling to generate rational transfer functions from
frequency responses available from simulated or measured data.
Numerical examples have demonstrated that the method is able
to find rational functions that accurately fit the data, while
correcting any possible passivity violations in the provided data.
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