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PASSOS: Passive Approximation Through
Sum-of-Squares Orthogonal Rational Functions
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Abstract—Signal and power integrity design in the time domain
requires equivalent circuit models for interconnects and packages,
whose descriptions may only be available as tabulated impedance
or admittance parameters. Accurate models for these components
should maintain their physical properties including causality, sta-
bility, and passivity. Sum-of-squares (SOS) polynomials, which
are guaranteed to be non-negative, can be used to address the
problem of generating passive scalar models, such as driving point
impedances or admittances, based on an existing causal, stable, but
nonpassive model. However, the poor conditioning of a monomial
basis in SOS constraints prevents large-order modeling. In this
article, we expand the SOS framework to reciprocal multiport
admittance or impedance network parameters by introducing a
methodology based on SOS matrices. In addition, orthogonalized
rational functions are incorporated to solve the conditioning prob-
lem by embedding the denominator polynomial in the basis.

Index Terms—Macromodeling, passivity, rational function, sum-
of-squares (SOS), stability, transfer function, vector fitting.

I. INTRODUCTION

MACROMODELING of passive networks for signal and
power integrity design is critical for accurate time do-

main simulation. Several rational function fitting techniques
exist to produce guaranteed stable and causal models, such as the
widely popular vector fitting algorithm [1] as well as versions
of AAA and the Loewner matrix methods with stable poles [2],
[3]. These methods provide accurate models with stable poles,
however, passivity conditions are not enforced. A nonpassive
rational function approximation may describe a system that
produces energy at particular frequency ranges which can lead
to unintended consequences if not accounted for.

Techniques to enforce passivity are typically implemented as
a postprocessing measure from an already causal and stable sys-
tem. A closed form of the bounded-real/Kalman–Yakubovich–
Popov (KYP) lemma conditions is used in [4] to exploit only the
nonpassive components of a partially passive or causal and stable
state-space model . Skew-Hamiltonian/Hamiltonian matrix pen-
cils are implemented in [5] in an adaptive sampling approach to
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identify violations followed by a passivity loop for corrections.
The residue perturbation scheme of [6] aims to improve on
similarly existing techniques by refining the perturbation of
the residues with a scaling factor based on the relationship
between the perturbation of the half-size singular test matrix and
eigenvalue perturbation. A parameterized version of bounded
real lemma conditions is used in [7], based on reformulations of
the residue and direct terms as sums of the Bernstein polynomials
which are known to be non-negative. The iterative Loewner
matrix-based method [8] introduces additional data points until
a passive model is obtained followed by a spectral zeros method.
The equivalence of passivity conditions or KYP lemma to
sum-of-squares (SOS) polynomials has been shown [9], [10],
[11]. However, a recent survey of passivity enforcement tech-
niques [12] does not include any SOS-based algorithm.

For passive admittance or impedance parameters, a funda-
mental requirement is that the real part of the transfer function
must be non-negative for all real frequency intervals. Assum-
ing an existing stable but nonpassive model, the real part of
the rational function consists of a non-negative denominator
polynomial. Univariate non-negative polynomials are known
to have an SOS decomposition, thus, the goal is to fit an SOS
polynomial to the numerator. We used a Chebyshev basis in [13]
and an orthogonal rational basis in [14] to improve the numerical
stability in generating passive models for one-port networks.

In this article, we present a method to generate passive models
for multiport networks using SOS orthogonal rational matrices
(PASSOS). A very critical consideration for large-order passive
approximation is the numerical conditioning. Use of a perfectly
conditioned orthogonal polynomial basis (such as Chebyshev
polynomials) still suffers from ill-conditioning due to the di-
vision by the denominator polynomial in a rational function.
We overcome this source of ill-conditioning by generating an
orthogonal rational basis directly through an Arnoldi iteration,
thereby integrating the prescribed denominator in the basis. We
present a passivity test for strictly proper transfer functions based
on a state-space representation of such orthogonal rational func-
tions to confirm the results. Numerical results from examples
of a common-mode filter, a stripline, and power/ground planes
demonstrate the accuracy and efficiency of this approach.

II. SYMMETRIC PASSIVE RATIONAL FUNCTIONS

Assume that a transfer function matrix representing
impedance or admittance parameters is given as a rational
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function or in pole-residue form as

R(s) =
F (s)

a(s)
=

∑m
i=0 Fis

i∑n
i=0 ais

i
= D + sK0 +

n∑
i=1

Ki

s− pi
(1)

where we assume that the network is reciprocal and represented
by a common set of poles pi. The coefficients Fi are matrices
and ai are scalars. This rational matrix will be passive, or equiv-
alently positive real, if it satisfies the following conditions [15].

1) The coefficients Fi, ai are real (i.e., R∗(s) = R(s∗)).
2) All poles pi are stable, that is they do not have positive real

parts. If there are any pure imaginary poles, they should
be simple and have positive semidefinite (PSD) residue
matrices.

3) The real part of the rational function is PSD at all real fre-
quencies ω, i.e., Re(R(jω)) has non-negative eigenvalues
or Re(R(jω)) ≥ 0.

The first two conditions can be enforced by using real arith-
metic in fitting the coefficients and flipping the signs of unstable
poles [1], [2], [3]. The second condition limits the degree of
the polynomials such that |n−m| ≤ 1 as pure imaginary poles
should be simple. In the following, we assume there are no pure
imaginary poles and m = n to simplify our presentation.

We can obtain the real part of R(jω) as

F (jω)a∗(jω) + F ∗(jω)a(jω)
2a(jω)a∗(jω)

=
N(ω2)

|a(jω)|2 . (2)

The real part of a rational function will be an even function of
frequency; hence the numerator polynomialN will be a function
ofω2. Assuming that a(s) is known and has zeros on the left half
plane only, R(s) will represent a passive network if its real part
given in (2) is PSD (i.e., N(ω2) ≥ 0). Such a univariate matrix
is PSD if and only if it is a sum-of-squares (SOS) polynomial
matrix [16] given by

N(ω2) = MT (ω)M(ω) (3)

where the degree of each polynomial in matrix M(ω), which
can be a rectangular matrix, is smaller than or equal to n. We
will see that our numerical method is better conditioned when
we include the denominator as

N(ω2)

|a(jω)|2 =
MT (ω)

|a(jω)|
M(ω)

|a(jω)| (4)

which we will call an SOS rational matrix.
The basis of our approach is to enforce the PSD constraint

on the real part of the rational matrix using such SOS rational
matrices. The approximation problem can then be expressed as
a norm minimization problem with a PSD constraint given as

minimize
l∑

i=1

||R(jωi)−Hi||2F

subject to
N(ω2)

|a(jω)|2 ≥ 0 (5)

where Hi is the provided impedance or admittance data at l
frequency points, and we use the Frobenius norm.

The positive real lemma provides an alternative set of condi-
tions for passivity based on a minimal state-space representation
of the rational function R(s) = C(sI −A)−1B +D. The third
passivity condition can be replaced with the feasibility of the
following linear matrix inequality:[

ATP + PA PB − CT

BTP − C −2D
]
≤ 0 (6)

in the symmetric matrix variable P [17]. P will necessarily be
a positive-definite matrix since the poles are stable.

III. SOS RATIONAL MATRICES

In [13], we enforce the non-negativity constraint for passive
scalar functions by expressing the real part numerator as an
equivalent SOS representation. We extend this methodology to
multiport networks in this article. One way to test whether a
univariate polynomial matrixN(ω2) is PSD is through the Gram
matrix P [16] of the SOS representation

N(ω2) = ([ω]⊗ I)TP ([ω]⊗ I), P ≥ 0 (7)

where P is a symmetric PSD matrix, I is the identity matrix
of size equal to the number of ports, and the monomial vector
is given as [ω] = (1, ω, . . . , ωn)T . This allows us to solve the
problem using a semidefinite program; a feasible solution for
a PSD P proves that N(ω2) is a PSD polynomial matrix.
The semidefinite program searches for a PSD P subject to the
equality constraints of the polynomial coefficients on both sides
of (7).

A. Even Symmetry

Since N(ω2) is an even function, we can reduce the problem
size by exploiting the symmetry following [18] as

N(ω2) = ET (ω)E(ω) +OT (ω)O(ω) (8)

where E and O are matrices of even and odd polynomials,
respectively. The corresponding Gram matrix representations
can be obtained as

ET (ω)E(ω) = ([ωe]⊗ I)TPe([ωe]⊗ I), Pe ≥ 0

OT (ω)O(ω) = ([ωo]⊗ I)TPo([ωo]⊗ I), Po ≥ 0 (9)

where the even and odd rational basis vectors are given as

[ωe] = (1, ω2, . . . , ωn)T (10)

[ωo] = (ω, ω3, . . . , ωn−1)T (11)

assuming n is even. For odd n, [ωe] = (1, ω2, . . . , ωn−1)T ,
[ωo] = (ω, ω3, . . . , ωn)T .

B. Sampling

The semidefinite program suffers from poor conditioning that
involves the coefficients of a monomial basis in SOS constraints.
One way to avoid working directly with the coefficients of
polynomials is to make use of the property that an nth degree
polynomial is uniquely defined by sampling it at least at n+ 1
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points [19], [20]. Accordingly, a sampling-based formulation of
the SOS constraint in (5) can be given as

Re (R(jωi))

=
([ei]⊗ I)TPe([ei]⊗ I) + ([oi]⊗ I)TPo([oi]⊗ I)

|a(jωi)|2
i = 1, . . . , l

Pe ≥ 0, Po ≥ 0. (12)

We can observe that the first line of (12) is equal to the real
part of R(jω) evaluated at the sampling point ω = ωi. The
right-hand side are the samples of a non-negative polynomial
matrix of the same degree divided by the denominator poly-
nomial. The monomial basis at the sampling points are given
as [ei] = (1, ω2

i , . . . , ω
n
i )

T , and [oi] = (ωi, ω
3
i , . . . , ω

n−1
i )T for

even n. There are two issues to be addressed at this point. First,
the ill-conditioning due to the use of a monomial basis. Second,
the division by |a(jωi)|2, as it can have a large variation over the
frequency samples. Next we present an Arnoldi iteration [21]
to generate orthogonal basis rational functions to solve both
sources of ill-conditioning.

C. Orthogonal Rational Function Basis

Consider a rational function r(ω) = n(ω)/|q(jω)|, where the
numerator polynomial is given in a monomial basis as n(ω) =∑n

i=0 ciω
i and the denominator is given in terms of its values at l

frequency points as di = 1/|q(jωi)| and d = (d1, d2, . . . , dl)
T .

The coefficients of n(ω) can be calculated from

D

⎡
⎢⎢⎢⎢⎣

1 ω1
1 . . . ωn

1

1 ω1
2 . . . ωn

2

...
...

. . .
...

1 ω1
l . . . ωn

l

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎢⎣

h1

h2

...

hl

⎤
⎥⎥⎥⎥⎦ (13)

or DV c ≈ h, where D = diag(d), and h is the vector of the
data at the given frequency points. It is well known that the
Vandermonde matrix V becomes ill-conditioned for high orders
of approximation n. To overcome this issue, an orthogonal
polynomial basis at the given frequency points can be generated
using an Arnoldi iteration to orthogonalize V . It has been shown
that the multiplication with D can still deteriorate the numerical
conditioning [21]. Instead, an orthogonal basis Q can be ob-
tained for the whole rational function (or DV ) by starting the
Arnoldi iteration with d as the initial vector. We choose the norm
of each column to be

√
l. Hence, the rational approximation

problem can be expressed as

Qf ≈ h (14)

where f are the coefficients of the orthogonal rational func-
tion. The monomial basis used in (12) can be obtained
from row i of V as [ei] = (vi0, vi2, . . . , vin)

T , and [oi] =
(vi1, vi3, . . . , vi(n−1))T . We simply replace them with rows of
Q for representation in an orthogonal rational basis (which also

includes the contribution of |a(jωi)|) as

Re (R(jωi))

= ([Ei]⊗ I)TUe([Ei]⊗ I) + ([Oi]⊗ I)TUo([Oi]⊗ I)

i ∈ {1, . . . , l}
Ue ≥ 0, Uo ≥ 0 (15)

where

[Ei] = (qi0, qi2, . . . , qin)
T

[Oi] = (qi1, qi3, . . . , qi(n−1))T (16)

for even n. Sampling should be done at least at a subset of n+ 1
frequency points from the given data set. However, sampling at
more frequency points is possible and can have an impact on
the conditioning of the problem. In this article we sample at
approximately 2n points (assuming 2n ≤ l), by skipping over
the frequency points appropriately to cover the whole range
of frequencies. In order to ensure the orthogonal basis in (16)
maintains the even–odd symmetry, we include the negatives of
the frequency points as well in generating the orthogonal basis
Q. Note that (13) includes a right-hand side of data samplesh for
illustration purposes only. The generated basis Q is independent
of this right-hand side and solely depends on the starting vector
d and frequency samples ω. As a result, the same basis Q would
be used for all the elements of a multiport network matrix as
well.

We have the flexibility to have a different basis on both sides
of the equation on the first line of (15) as the equality is in terms
of the values and not coefficients. The right-hand side are the
samples of a non-negative even rational function expressed in an
orthogonal basis for good numerical conditioning. The left-hand
side can for example be expressed in a partial fractions basis,
such as used in vector fitting [1], or in barycentric form, as in
AAA [2], [22]. In the following we use an orthogonal basis for
the left-hand side as well, based on the Arnoldi iteration [21].

IV. STATE-SPACE MODEL FOR ORTHOGONAL RATIONAL

FUNCTIONS

One way to export the model in a standard format is to
generate a state-space model. This allows the model to be used
in simulators and verify whether the model is indeed passive. To
that purpose, it is possible to represent the rational function in
(1) using an orthogonal basis [23] as well to yield

R(s) =

∑m
i=0 Fis

i∑n
i=0 ais

i
=

∑m
i=0 Giui(s)∑n
i=0 biui(s)

(17)

where we assume that the denominator polynomial coefficients
a are known and an orthogonal basis u is obtained based on the
samples of this denominator and the frequency points. There-
fore, u already includes the division by the denominator similar
to (14), and G would be the only free variables in the optimiza-
tion problem of (5) to represent the rational function R(s) in an
orthogonal basis. This would be sufficient for approximation or
interpolation purposes; however, a rational function is needed
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Algorithm 1: Algorithm for Passive Modeling of Multiport
Networks using SOS Orthogonal Rational Matrices (PAS-
SOS).

Input: Strictly stable denominator a(jωi), data Yi at l
frequency points ωi; order n

Output: State-space model (A,B,C,D) of a passive
rational function

1: d← 1/a
2: d← d

√
l/norm(d)

3: Q← Arnoldi basis starting with |d|
4: Ei, Oi ← slices of Q following (16)
5: U,H ← Arnoldi basis starting with d
6: G←

minimize
∑l

i=1 ||
∑n

k=0 Gkuik − Yi||2F s.t. (15)
7: b← minimize

∑l
i=1 |

∑n
k=0 bkuik − 1|2

8: A,B,C,D ← state-space from H,G, b following (18)

for representation in state-space form. This is achieved by using
the same orthogonal basis u, and finding the coefficients b of
the denominator such that

∑n
i=0 biui(s) = 1. This is solved as

a least squares problem; however, the results will be precise as
we are fitting data obtained from a same-order polynomial. So
the problem we are solving is equivalent to calculating the co-
efficients of b(s) from b(s)/a(s) = 1, given a(si), i = 1, . . . , l
and l ≥ n+ 1. We have a solution if the degrees of b(s) and
a(s) are the same, and b(s)/a(s) = 1 holds at every point.

It is useful to note that we do not need an explicit represen-
tation of the orthogonal basis polynomials ui(s) to use them
in the optimization problem (5). All that is needed is their
evaluation at discrete frequency points that is already available
as ui(sk) = uki, where uki are the elements of an l × (n+ 1)
matrixU with orthogonal columns obtained through the Arnoldi
iteration. The Arnoldi iteration also provides an (n+ 1)× n
upper Hessenberg matrix H . To integrate such a model in circuit
simulators, or to test for passivity, a state-space representation
can be used. For the case (m < n), a state-space transformation
is given in [23], which can be extended for the (m = n) case as

A = HT
n ⊗ I − hn+1,n(e⊗ I)(bT0:n−1/bn ⊗ I)

B = hn+1,n(e⊗ I)/bn

C = (G0 G1 . . . Gn−1)− (bT0:n−1/bn ⊗Gn)

D = Gn/bn (18)

where Hn is an n× n matrix obtained from H by removing its
last row, hn+1,n is the bottom-right element of H , b0:n−1 is the
denominator coefficient vector except for the last element, e is
a vector of n− 1 zeros followed by a 1 as its last element, I is
the identity matrix of dimensions equal to the number of ports,
and ⊗ represents the Kronecker product.

The overall PASSOS algorithm including the generation of
such a state-space model is summarized in Algorithm 1.

This specific state-space representation is one possible real-
ization. A simpler approach would be to fit the residues to the
passive model approximation obtained in Step 6 of the algorithm.

As the order of the models match, we would once again obtain
a precise fitting of the residues with guaranteed passivity. This
is related to the unique definition of an nth degree polynomial
through its values at greater than n points. A more thorough
description of the orthogonal rational approximation, along with
a Matlab code to generate state-space models out of that are
presented in [24].

V. TEST FOR PASSIVITY

The SOS formulation or the positive real lemma allows us to
solve the passive approximation problem. They could also be
solved for feasibility, in order to test whether a given rational
function is passive. For this latter case, a numerically more
efficient approach is through the test matrix S obtained from
a state-space representation by

S = A(BD−1C −A). (19)

S should have no positive-real eigenvalues. If it does, then the
square-root of the positive-real eigenvalues are the frequencies
where passivity violations start or end [25]. In the following, we
extend this test when there is no D term.

The passivity test above requires that the matrix D is non-
singular, otherwise a transformation of variables is needed [26].
A common case is a strictly proper transfer function with no D
term, which occurs when m = n− 1 in (1). In general, the real
and imaginary parts of a transfer function can be separated [27],
[28], [29] using

(jωI −A)−1 = −A (
ω2I +A2

)−1 − jω
(
ω2I +A2

)−1
(20)

to yield

Re(R(jω)) = −C (
ω2I +A2

)−1
AB (21)

which is a strictly proper transfer function in the variable ω2. Its
zeros would be the same as the zeros of

ω2Re(R(jω)) = CA2
(
ω2I +A2

)−1
AB − CAB (22)

after discarding the zeros introduced at 0. At the zeros of this
transfer function,N(ω2)becomes singular, indicating frequency
points where passivity violations begin or end. The zeros of
Re(ω2R(jω)) can be obtained from the eigenvalues of its inverse
state-space matrix

T = −A (
I2 +B(CAB)−1CA

)
A. (23)

This test applies only to symmetric network functions similar
to (19) [28]. To summarize, the eigenvalues of the test matrices
S and T can be used to detect possible passivity violations of a
transfer function with and without a D matrix, respectively.

VI. NUMERICAL RESULTS

In this section, we provide several numerical examples of
simulated and measured admittance or impedance data. The
eigenvalues of the real part transfer function approximations
are plotted for the approximated stable and passive models.
Eigenvalues of the test matrices described earlier are also shown
with asterisks (denoted as passivity violations in the figures)
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to show frequency ranges for nonpassive behavior of stable
models. In addition, plots of the passive magnitude transfer
function approximation are provided alongside the original data.
Eigenvalue and magnitude plots display the upper triangular
portions of the approximated symmetrical data. In all examples,
SOS models correctly enforced passivity. All algorithms are
running on a computer using Windows 11 with an 11th Gen
Intel(R) Core(TM) i7-11700 K 3.60 GHz eight core CPU.

The first example is a pair of solid power/ground planes
that have been simulated at 301 frequencies using the finite
difference method [30] to obtain admittance parameters of two
symmetrical ports. This example is chosen as simulation or
measurement errors may result in nonpassive initial data in
practical examples. The eigenvalues of the real part admittance
data indicate nonpassive behavior in three frequency ranges near
the center of the frequency range. Vector fitting was used to
obtain a model with 40 stable poles after 20 iterations. The
result was an excellent match to the eigenvalues of the provided
data; therefore the outcome was also a nonpassive model. Fig. 1
shows the comparison of the passive and nonpassive eigenvalues
of the rational functions with the provided data. In Fig. 1(b),
the SOS model follows the behavior of the stable model while
maintaining non-negativity within the nonpassive region of the
stable model. The magnitude plot in Fig. 1(c) shows the SOS
approximation agreeing well with the original data.

The second example is from a two-port stripline measured
at 5001 frequencies with data approximated using 40 poles and
20 iterations of vector fitting. Fig. 2(a) indicates eight frequency
bands of passivity violations in the stable model. An example fre-
quency band is shown in Fig. 2(b) with two passivity violations
with a center frequency of 78 GHz. The eigenvalues of the real
part of the passive model identified and corrected all violations
while maintaining a low rms error of 9.60E-03 in comparison to
9.56E-03 of vector fitting. The SOS model maintains a good fit
to this larger dataset, as seen in the magnitude plot, Fig. 2(c).

The third example is a four-port common-mode filter for
differential lines [31]. The measurement is done with a vector
network analyzer across 1001 frequencies to obtain the admit-
tance parameter data of its four ports. The stable model is
obtained through vector fitting using 50 poles and 20 iterations.
Fig. 3 shows the comparison of the nonpassive model with
50 poles against passive models having the same number of
poles from SOS, residue perturbation through the Matrix Fitting
Toolbox (MF) [32], and KYP lemma (KYP) approaches. The
nonpassive model has an rms error of 1.98E-03, however, results
in many frequency bands with passivity violations. Enforcing
passivity with an SOS approach leads to a model with slight
increase in error of 2.41E-03. Two of the passivity violations
occurring in the admittance parameters of the stable model are
shown in the frequency range near 38.2 GHz provided in Fig.
3(b). The SOS approximation results in a model with eigenvalues
touching zero but not crossing, while also preserving the vector
fitting behavior. Observing the magnitude plot in Fig. 3(c), SOS
using orthogonal rational functions continues to provide good
fits with increasing ports size. In this example, the passivity test
matrix of the model approximation based on the KYP lemma in-
dicated very small passivity violations near the beginning of the
dataset. Upon further inspection, there was no sign of a passivity

Fig. 1. (a) Full and (b) zoomed-in eigenvalue plots derived from the input
admittance of a multiport simulation solid power/ground planes. The nonpassive
model resulted in three frequency bands with passivity violations as shown. (c)
Magnitude of the passive admittance parameters alongside the original data.

violation through a sweep of the eigenvalues of the real part. This
may be due to the sensitivity of the eigenvalue calculation of test
matrices in the case of closely spaced eigenvalues.

Timings and rms errors of different models are collected for
various approximation orders in terms of the number of poles,
as seen in Fig. 4. In Fig. 4(a), the rms error plot with respect to
number of poles clearly shows the cost associated with enforcing
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Fig. 2. (a) Full and (b) zoomed-in eigenvalue plots derived from the real part of
the admittance parameters of a multiport stripline measurement. The nonpassive
model resulted in eight frequency bands with passivity violations as shown. (c)
Magnitude of the passive admittance parameters alongside the original data.

Fig. 3. (a) Full and (b) zoomed-in eigenvalue plot of the real part of admittance
parameters of a four-port common-mode filter measurement. The nonpassive
model results in many passivity violations as shown. In (c) the magnitude of the
SOS approximation shows good agreement with the original data.
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Fig. 4. Collected rms errors and timings using the common-mode admittance
parameter data of example 3, for various approximation orders in the number
of poles. (a) RMS errors of the stable VF model and passive SOS, KYP, and
MF models from 40–50 poles. (c) Timings of the three passivity enforcement
algorithms with the KYP lemma failing to solve for a 29 pole solution. The
SOS algorithm converges to an equivalent KYP solution in all comparable cases
while maintaining roughly an order of magnitude difference in solving time.

passivity as SOS, MF, and KYP solutions deviate from the stable
vector fitting results. The three distinct curves corresponding to
the stable (VF), passive optimal (SOS and KYP), and passive
suboptimal (MF) solutions. The SOS algorithm converges to the
equivalent KYP solution at roughly an order of magnitude faster
across the pole variation shown in the semilog plot Fig. 4(b).
Notably, the KYP lemma fails to solve for a solution with 29
poles which is indicated by the gap in the KYP data of the same
figure. We found that the direct application of KYP lemma was
numerically unstable. We did two things to make it work for
higher orders: 1) frequency normalization and 2) scaling the
PSD matrices in the semidefinite program. Depending on the
scaling factor, the semidefinite program had trouble converging.
This numerical instability is a major handicap for the direct use
of KYP lemma. We did not use any frequency or PSD matrix
scaling in PASSOS.

For approximation orders up to 20 poles, SOS is able to
produce solutions in comparable times to MF. The deviation

TABLE I
RMS ERRORS OF MULTIPORT MODELS

occurring in larger order models is expected and is due to the
added complexity of the semidefinite problem.

The last example is of a ten-port cavity resonator from a
simulation using the full-wave analysis tool, Sonnet [33]. The
impedance parameters are collected over a range of 600 frequen-
cies from 100 MHz to 60 GHz and are approximated using 50
stable poles with 20 iterations of vector fitting. The eigenvalues
of the real part admittance of the stable model in Fig. 5(a)
result in ten real roots in the region of 10–20 GHz. Fig. 5(b)
shows one of the frequency bands, where a passivity violation
occurs in the vector fitting model. Both SOS and MF passive
solutions correct the violations with differing model behavior, as
shown in the figure. Comparing to the original data, vector fitting
approximates a stable model with an error of 8.50E-02; whereas,
the corrections with SOS lead to an increased error of 8.55E-02.
The magnitude of the passive SOS impedance parameters are
overlaid on top of the corresponding data in Fig. 5(b). A model
using the KYP lemma could not be obtained for this example as
the memory resources were exceeded.

VII. RESULTS AND DISCUSSION

The multiport rms errors of the transfer functions and timings
are collected and listed in the following tables. The errors are
calculated with respect to the upper triangular portions of the
symmetrical data in each example. The timings include only
the passivity enforcement function calls and not the stable pole
extraction time. In these tables, we have included results from
existing approaches: residue perturbation through the Matrix
Fitting Toolbox and the KYP lemma. The KYP lemma approach
was implemented as a norm-minimization problem using the
stable state-space model result from vector fitting according to
(6). Both the KYP lemma and PASSOS formulated problems
are solved using the CVX Package [34]. In order to produce
viable results for these large orders with the KYP lemma, both
frequency scaling and constraint scaling were used. In the tables,
vector fitting and Matrix Fitting Toolbox results are denoted by
the abbreviations VF and MF, respectively.

Considering the rms errors in Table I, the stable results from
vector fitting provide an accurate fit to the data as expected while
the passive approximation approaches are all on the same order
of magnitude for each example. SOS provides the globally opti-
mum fit for the numerator, as demonstrated by its equivalence to
KYP results. The four examples correspond to Figs. 1, 2, 3, and 5,
respectively. The first example demonstrates the tradeoff cost for
a physical model as all passive approximations exhibit over an
order of magnitude increase in error. This was anticipated for the
first example since the data itself was nonpassive. In the second
example, the accuracy of all passive results appears identical
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Fig. 5. (a)–(c) Model approximations using the impedance parameters of a
simulated ten-port cavity resonator. (a) Eigenvalues of the real part impedance
across the entire frequency range of data. (b) A frequency band showing passive
approximations using an initial stable but nonpassive vector fitting model. (c)
Magnitude plot including the original impedance parameter data and the passive
SOS approximation.

TABLE II
TIMINGS OF PASSIVE MULTIPORT MODELS IN SECONDS

but, as seen in Fig. 3(b), there are two distinct solutions; the
suboptimal and optimal solutions. A similar trend is observed in
example 3, which doubles the port size from 2 to 4 and increases
the approximation order to 50. Increasing the port size again to
10 ports, the high complexity of the LMI constraints in the KYP
lemma becomes an issue and causes our system to exceed the
available memory resources. As a result, a solution using the
KYP lemma could not be obtained. The PASSOS framework
is well conditioned and more efficient to enforce passivity of
larger models and finds a solution with the lowest error. Next,
observing the timings in Table II, the computational cost of
KYP for high model order is visible across all examples. The
LMIs of the KYP lemma require several seconds to minutes
to reach a passive solution, whereas SOS and matrix fitting
methods determine a passive model in a fraction of the time. For
the larger 10 port example 4, as mentioned previously, a KYP
lemma-based solution for 50 poles cannot be solved; solving
for a 20 pole solution requires over 930 s or 15.5 min. The
equivalent SOS-based algorithm significantly lowers the solving
time and allows for a globally optimal passive approximation.
Timings for SOS in the first two examples, with two ports,
are comparable in order to passivity enforcement with matrix
fitting. The residue-perturbation-based approach outperforms
SOS timings in examples 1, 3, and 4, however, falls behind for
example 2. For passivity assessment, the Matrix Fitting Toolbox
is known to establish an assortment of frequency points with
passivity violations. Therefore, the example 2 timings may likely
be contributed to the larger size of 5001 frequency points in
comparison to the 301 and 1001 points of the first and third
examples, respectively. The difference in timings of the last
example are related to the efficiency of the quadratic problem
being solved with the residue perturbation approach.

VIII. CONCLUSION

In this article, we have introduced PASSOS for passive ap-
proximation using SOS orthogonal rational functions. Instead
of using SOS polynomials to fit residues, we incorporated the
denominator polynomial through the Arnoldi iteration to solve
for orthogonal SOS rational functions. This method improves the
numerical conditioning to allow approximation of large-order
models. Numerical examples have demonstrated the method is
able to reliably find rational functions that accurately fit the data,
while correcting any possible passivity violations over the entire
frequency range of the provided data. Our results demonstrate
SOS-based algorithms can consistently provide globally optimal
solutions with solving times significantly faster than the direct
application of the KYP lemma, and at times comparable to
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a known locally optimal passivity enforcement method. The
improvements are particularly noticeable for datasets when a
large number of frequency samples are used or with increasing
number of ports.
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