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Extraction of Dielectric Constant and Loss Tangent
Using New Rapid Plane Solver and Analytical

Debye Modeling for Printed Circuit Boards
A. Ege Engin, Member, IEEE

Abstract—Dielectric material properties of printed circuit
boards (PCBs) are needed by designers working in various areas
such as signal integrity, antennas, and embedded RF components.
Among many methods to extract the material properties, the full
sheet resonance technique is commonly used on PCBs due to its
simplicity. The disadvantage of this method is that an analytical
equation is used to extract the dielectric constant, which is ac-
curate only for lossless dielectrics. In this paper, a new method
is presented to solve the inaccuracy issue of the extraction of
the dielectric constant by applying customized electromagnetic
simulation based on a new rapid plane solver instead of analytical
equations. For PCB dielectrics, the loss tangent tends to be flat
over several decades. The dielectric constant then varies as a func-
tion of frequency based on the Kronig–Kramers relations. This
paper introduces a new Debye type of a model for the complex
permittivity of such dielectrics. The parameters of the Debye
model can be obtained analytically without requiring any curve
fitting. The resulting Debye model can then be easily integrated in
SPICE or a finite-difference time-domain simulator.

Index Terms—Causality, complex permittivity, debye, dielectric
constant, flat sheet resonance, loss tangent, rapid solver, vector fit-
ting.

I. INTRODUCTION

A CCURATE estimation of the dielectric constant and loss
tangent at high frequencies is becoming increasingly im-

portant as the frequency content of the signals in printed circuit
boards (PCBs) and chip packages increase. Accuracy of the de-
sign of embedded RF components and planar antennas on PCBs
depend highly on the knowledge of the dielectric material proper-
ties. The signal integrity of a high-speed link can also suffer from
closed eye diagrams due to dielectric losses. Although low-loss
dielectrics are available to achieve high- RF compenents and
improved signal integrity, they come at a higher cost. Accurate
estimation of the broadband dielectric constant and loss tangent
as a function of frequency is, therefore, critical.

Many techniques are available to characterize the material
properties, such as the short-pulse propagation technique based
on time-domain reflectometry measurements [1], microstrip
bandpass filters [2], or microstrip gap or ring resonators [3]–[5].
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Fig. 1. Test structures used in the full sheet resonance technique. (top) With
open boundaries. (bottom) With shorted boundaries.

A survey of commonly used techniques for characterization of
PCB dielectrics is provided in [6].

A simple method for dielectric material characterization is
the full sheet resonance method [7]–[10]. In this technique, and
in its variations, a parallel-plate waveguide resonator, as shown
in Fig. 1 (top) with open boundaries, is used. Typically a two-
port measurement is performed, where the locations of the two
ports and can be defined for convenience of measurement
or based on the waveguide resonator modes to be excited. The
two-port measurement is preferred since it helps to deembed
the probe inductance automatically out of the measurements of
transfer impedance. A similar waveguide resonator with shorted
boundaries, as in Fig. 1 (bottom), could also be used with the
advantage of eliminating radiation losses and fringe effect [11].
A large number of vias should be used in the shorted waveguide
resonator in order to reduce the inductance of the vias and obtain
an accurate electric wall boundary.

In the classical full sheet resonance method [7], an analytical
equation is used to estimate the dielectric constant at resonance
frequencies of the open resonator as

(1)

at the discrete resonance frequency of the mode of
the waveguide resonator. This equation is accurate for negli-
gible conductor losses; hence, it becomes inaccurate at higher
frequencies. The resonance frequency also changes depending
on the location of the probes ( and ) [9]. The loss tan-
gent is then extracted from the quality factor of the waveguide
resonator. However, this requires accurate knowledge of the
conductor losses and radiation losses. In [10], electromagnetic
(EM) simulation of the measured resonator has been used to
compensate for these effects, except for the radiation losses.
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In this paper, the shorted resonator is compared against the
commonly used open resonator using full-wave EM simulation,
as well as a new rapid plane solver that speeds up the compu-
tation time significantly. The rapid plane solver is based on the
fast Poisson solver described in [12]. In the presented approach,
dielectric material properties are extracted by overlapping sim-
ulation results with measured results. As such, this new method
does not suffer from the inaccuracies of the standard full-sheet
resonance method in extraction of dielectric constant or loss tan-
gent. The method is applied to extract the dielectric constant and
loss tangent of a low-loss and a standard FR-4 substrate. The
presented approach is different than [10], as a shorted resonator
is used instead of an open resonator. This paper also presents a
new method for time-domain modeling of complex permittivity.

After the dielectric constant and loss tangent have been ex-
tracted at resonance frequencies, a Debye model can be con-
structed to interpolate and use the data in circuit or finite-differ-
ence time-domain (FDTD) simulators. On the other hand, ob-
taining the parameters of the Debye model using standard curve-
fitting approaches is difficult, as the additional constraints of
passivity and RC type of a circuit topology need to be enforced.
Most PCB dielectrics, however, have an approximately con-
stant loss tangent over the frequency ranges of interest, whereas
the dielectric constant decreases with frequency. For such di-
electrics, a closed-form expression exist, which is an irrational
function. In this paper, a passive RC network realization, which
corresponds to a Debye model, of such an irrational function is
presented. This allows the determination of the parameters of
the Debye model analytically using simple equations without
requiring any curve fitting.

The main contributions of this paper can be summarized as
follows.

1) A numerical algorithm called a “rapid plane solver” is ap-
plied for the first time for EM characterization of shorted
waveguide resonators. The application of the numerical
method instead of the analytical equation in (1) improves
the accuracy of the extracted dielectric constant.

2) Optimum placement of probe locations is investigated.
3) The rapid plane solver is applied to extract the dielectric

constant and loss tangent of a low-loss dielectric and FR-4
using shorted resonators.

4) A methodology is presented to obtain the parameters of
a Debye model analytically. The result is the realization
of a time-domain model representing frequency-dependent
complex permittivity.

II. RAPID PLANE SOLVER

In this section, a new numerical method is presented to ob-
tain the impedance matrix of the shorted waveguide resonator in
Fig. 1. Using a numerical method improves the accuracy of pre-
dicting the resonance frequency of the structure for lossy con-
ductors and dielectrics compared to the analytical equation in
(1), which is accurate only for lossless dielectrics.

Instead of applying a general full-wave EM simulator, we
make use of the fact that the thickness of the dielectric is much
smaller than the lateral dimensions; hence, the variation of the
electric and magnetic fields with respect to the -direction can
be neglected. This assumption is also the basis of the analytical

equation in (1). The voltage at any point can
then be described with the 2-D Helmholtz wave equation

(2)

A. Shorted Resonator

For the shorted resonator type, the boundary conditions are
of Dirichlet type, , along the boundaries of the resonator.
One way to solve this equation numerically is by using the finite-
difference method (FDM). The five-point discretization of the
Laplace operator results in a linear equation system that
can be expressed as

. . .
. . .

. . .
(3)

where is a vector of voltages on a rectangular grid. The nodes
are numbered using canonical ordering of interior points, i.e.,
starting from left to right and then bottom to top. The vector

represents any current sources connected between the two
plates. The system matrix has a block-diagonal shape, with the
matrices in the center and off-diagonal blocks as identity ma-
trices of size , where is the number
of discretized segments in the direction from left to right. The
submatrix has the structure

. . .
. . .

. . .
(4)

In general, this type of a linear equation system can be effi-
ciently solved using a sparse algorithm based on nested dissec-
tion. However, a much more efficient solver can be obtained by
considering the special structure of , as it can be diagonalized
using the discrete sine transform. This property can be used to
transform the system matrix into a tridiagonal matrix, to speed
up the computation compared to a general-purpose sparse ma-
trix solver [12].

Fig. 2 shows the simulation results for a square-shaped
shorted resonator that is excited at the center at 1 GHz. The
resonator has lateral dimensions of 1 m 1 m and a separation
between the two plates of 200 m. The permittivity and per-
meability of free space has been used in these simulations and
losses have not been included. In the rapid solver, the structure
has been descritized using 64 segments on each direction (i.e.,

), which resulted in 3969 unknowns. To validate the
results, the finite-element method (FEM) has been applied on
the same problem. In the FEM, 2705 nodes were used. Slight
differences between the simulation results can be seen. First,
in displaying the results from the rapid solver, the voltage at
the boundaries has not been shown in the figure since they are
eliminated while setting up the matrix system in (3). Second,
there is a slight asymmetry in FEM results (although the simu-
lation setup is symmetric) since the point source in the center is
actually distributed along the three nodes of the triangle in the
center, causing a slight asymmetry. In the rapid solver, a perfect
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Fig. 2. Simulation mesh and voltage distribution on a square-shaped (1 m on
a side) shorted resonator. (a) Using a rapid solver with� � ��. (b) Using the
FEM.

symmetry can be observed. To see whether these differences
vanish for increased mesh density, further simulations were
done. Fig. 3 shows the simulation results with a mesh size of

for the rapid solver, and about 160-K nodes for the
FEM case. It can be seen that the two results have converged to
each other, except at the singular point of the excitation point
source in the center.

Since the FEM uses a different mesh than the rapid solver, a
slight deviation is expected. However, a direct solution of the
matrix in (3) should provide a result within round-off error to
the rapid solver result. This has been confirmed through sim-
ulations as well. Since the results of the direct FDM solver is
essentially the same as for the rapid solver, they are not repro-
duced here. As for the run times, Fig. 4 provides a comparison of
the three different methods investigated. The rapid plane solver
can be used to simulate shorted resonators with as many as five
million nodes, whereas a standard FEM or FDM code runs out
of memory for less than a million nodes. The simulations were
done on a laptop PC with 3 GB of RAM and a clock frequency
of 1.4 GHz. For similar number of nodes, the speed-up obtained
in using the rapid planes solver compared to the (2-D) FEM can
be higher than 25 . The accuracy is within round-off error com-
pared to the standard FDM.

B. Open Resonator

A rapid plane solver has been described in [10] for the open
resonator and the details are not repeated here. For this case, a

Fig. 3. Voltage distribution on a square-shaped (1 m on a side) shorted res-
onator. (a) Using a rapid solver with � � ���. (b) Using the FEM.

Fig. 4. Simulation time in seconds for three different numerical techniques in-
vestigated.

2-D discrete cosine transform can be used to obtain a rapid plane
solver. This ensures that homogeneous Neumann boundary con-
ditions are met along the boundaries of the resonator.

Both the shorted and open resonators are based on the 2-D
Helmholtz equation (2); hence, their accuracy ultimately depend
on the accuracy of this equation to model the resonators. For
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Fig. 5. Geometry of the shorted resonator simulated using Sonnet and the rapid
plane solver.

very thin dielectrics, where the fringe effects are negligible, the
2-D Helmholtz equation is an excellent approximation as long
as the wavelength is much smaller than the dielectric thickness.
However, for typical dielectrics, there will be some fringe fields
and radiation from the edge of the board for the open type res-
onator. The radiated fields are not included in (2); hence, the
rapid plane solver for open resonators does not include radi-
ated loss. For the shorted resonator, on the other hand, there
is negligible radiation. Hence, if an electrical wall can be re-
alized by using an excessive number of ground vias or by using
conducting tape around the edges of the board, the losses in a
shorted resonator can be more accurately modeled using the
rapid plane solver compared to an open type resonator. This
should increase the accuracy in extraction of dielectric losses.

To demonstrate the accuracy, an open resonator and a shorted
resonator was simulated using both the rapid solver and a full-
wave EM solver Sonnet.1 The resonators had a square shape
with a side length of 20 mm, , , dielec-
tric thickness of 0.2 mm, and copper conductors with 35- m
thickness. For the shorted resonator, the two probes were located
at locations (5 mm, 5 mm) and (15 mm, 15 mm), as shown in
Fig. 5. Since the electric wall is realized using vias, the question
arises as where to define the location of the electrical wall in the
rapid plane solver. As this figure suggests, the distance between
the inner edges of the planes were 20 mm in Sonnet simulation.
A best match between the rapid solver and the Sonnet results
were obtained when the electric wall was defined at the center
of the vias in the rapid solver, which increased the plane size
from 20 mm 20 mm to 20.25 mm 20.25 mm.

Fig. 6 shows the transfer impedance simulated using the rapid
plane solver and Sonnet demonstrating good accuracy in both
the magnitude and resonance frequency.

Next, an open resonator was simulated with the same proper-
ties as the shorted resonator, except that the ports were placed
at two opposite corners of the resonators. Although the reso-
nances match very well, the impedance peaks in the rapid plane
solver are higher in magnitude compared to the full-wave sim-
ulation result obtained using Sonnet, as shown in Fig. 7. The
reason is that the radiation losses are not included in the rapid
plane solver. The accuracy of the extracted loss tangent would
be higher than the actual value to compensate for this additional
loss. Fig. 8 shows the loss factor calculated when the dielectric
is lossless and conductors are perfect for the considered shorted

1Sonnet 11.56, Sonnet Software Inc., North Syracuse, NY.

Fig. 6. Shorted resonator in Fig. 5 simulated using Sonnet and the rapid plane
solver.

Fig. 7. Open resonator simulated using Sonnet and the rapid plane solver.

Fig. 8. Radiation loss factor for an open resonator simulated using Sonnet.

and open resonators. The loss factor here corresponds to the ra-
diation losses, which is the main source of discrepancy in the
open resonator simulation in Fig. 7. For the shorted resonator,
the radiation losses are negligible, as expected.
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C. Incorporation of Losses

The finite-difference approximation of the Helmholtz equa-
tion (2) as obtained by the rapid plane solver can be considered
as a bedspring model consisting of a 2-D array of per unit cell se-
ries inductances and shunt capacitances. Losses can be included
in this model by using a complex permittivity and permeability
function. The complex permittivity is defined in the usual way
as

(5)

where is the real part of the permittivity and is the loss
tangent of the dielectric. The conductor losses can be approxi-
mated with the surface impedance as

(6)

where is the Laplace variable, is the permeability of the
conductors, is the conductivity of the conductors, and is
the thickness of the conductors [13]. The function arises
from the solution of a plane wave incident on a thin metal sheet
and ensures the expected variation of the skin-effect resis-
tance, as well as the correct dc resistance value [14]. The surface
impedance in (6) is a minimum-phase (hence, causal) function.
To incorporate the conductor losses, a complex permeability for
the dielectric can then be used as

(7)

where is the real part of the permeability of the dielectric,
which is equal to the permeability of free space in most cases,
and is the thickness of the dielectric. This complex perme-
ability changes the lossless per-unit-cell impedance of
to the correct lossy definition of . A similar com-
plex permeability has been used in [15] to incorporate conductor
losses in modeling of planar structures in power distribution net-
works.

D. Probing Points

Measurements can be taken on the resonators using a vector
network analyzer (VNA). Although coaxial cables of the VNA
can be soldered on the resonator with appropriate connectors,
using microprobes typically requires smaller probing pads in-
creasing the accuracy of the measurement. For the open res-
onator structures, the probing can even be accomplished from
the sides, which does not require any vias for the probing pads
[16]. This is not possible for the shorted resonator type and vias
must be drilled to connect the probes to the lower plate. At the
resonance frequency, the open resonator has a voltage distribu-
tion of the form

(8)

corresponding to the mode of the open waveguide res-
onator. Similarly, the shorted resonator exhibits a voltage distri-
bution of the form

(9)

Fig. 9. Location of the impedance maxima up to the � � �, � � � mode for
the shorted resonator. For clarity, the corresponding modes for the maxima are
shown only in the lower left quadrant, which repeats itself symmetrically in the
other quadrants.

where is an arbitrary constant. In order to excite the reso-
nances and pick up a large impedance magnitude, the probes
should be placed at the maxima of these voltage profiles. For the
open resonator, a good location is the corners of the resonator
since the corners are at a maximum point of the cosine func-
tions in both directions in (8). On the other hand, it is, of course,
not possible to excite the shorted resonator by a probe on the
edge. Fig. 9 shows the location of the maxima for the nine reso-
nance modes up to . Note that, unlike the open resonator,

or modes do not exist for the shorted resonator.
It is desirable to place the probes at locations where they are
close to the maxima of the modes, as shown in Fig. 9, and far
from the minima. For each considered mode, (9) can be eval-
uated to find the probe locations that correspond to an overall
high voltage magnitude. Optimal points can be defined those
that have the largest minimum value considering the various
modes. Considering the nine resonance modes up to ,
some of the optimal locations lie 1/4 of the diagonal away from
the corners of the plane. This actually corresponds to the loca-
tion of the mode maxima in Fig. 9.

To see the effect of the probe locations, two probes were
placed 1/4, 1/5, and 1/6 of a diagonal away from opposite cor-
ners of the resonator. The considered shorted resonator has a
dielectric constant of 4, loss tangent of 0.025, copper plates
of 35- m thickness, and a square shape of 2 cm on the side.
Fig. 10 shows the magnitude of the transfer impedance, simu-
lated using the rapid plane solver. Placing the two probes 1/4 of
a diagonal away from two opposite corners resulted in higher
impedance peaks for the first three resonances, which would re-
sult in greater measurement accuracy.

Finally, it is possible to choose a rectangular design instead
of a square-shaped resonator to have distinct resonance frequen-
cies for a and mode; however, it should be
taken into account that the impedance peaks for the same reso-
nance frequencies might also decrease for a rectangular design.

III. CHARACTERIZATION OF A LOW-LOSS

SUBSTRATE AND FR-4

A. Extraction of Complex Permittivity

A standard FR-4 substrate and a low-loss substrate were
characterized using shorted resonators of size 8 cm 8 cm.
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Fig. 10. Transfer impedance between two points located 1/4, 1/5, and 1/6 of a
diagonal away from two opposite corners of a square-shaped shorted resonator.

The two ports were placed 1/4 of a diagonal away from two
opposite corners of the resonator. The two-port -parameters
were measured using the VNA Agilent E5071C, and 250- m
ground–signal–ground (GSG) probes from Cascade. The mea-
surements were taken after a short-open-load-thru (SOLT)
calibration from 300 kHz to 20 GHz at 1601 linearly spaced
frequency points. The transfer impedance was then obtained
from the calibrated -parameters and compared against rapid
plane solver simulations to extract the loss tangent and di-
electric constant at resonance frequency points, as shown in
Fig. 11. In the simulations, a discretization of 512 unit cells in
each direction was used, resulting in a mesh length of less than
0.1 mm. The dielectric thickness was obtained as 193 m to get
the best match between simulations and measurements. Even
though this method allows to extract the dielectric thickness,
it is also possible to measure the dielectric thickness from the
cross section very accurately to simplify the fitting procedure.
For each subfigure, a different dielectric constant and loss
tangent has been used in the simulator. In fitting these parame-
ters, it is useful to consider the locations of the resonances for
extracting the dielectric constant, whereas the peak amplitudes
are mostly sensitive to the loss tangent.

The results for the low-loss substrate are shown in Fig. 12.
The dielectric thickness in this case was obtained as 188 m. As
expected, the resonances are sharper compared to the more lossy
FR-4 substrate in Fig. 11 since the loss tangent is much smaller.
In both cases, the simulations match measurements very well
around all resonance points. Note that the resonance frequencies
chosen in Figs. 11 and 12 do not necessarily correspond to the
same modes.

B. Modeling of Complex Permittivity

Figs. 11 and 12 show that the extracted material properties
are frequency dependent. Any model for complex permittivity
should satisfy the Kramers–Kronig relation; otherwise, the re-
sulting model would be noncausal and provide inaccurate results
in time-domain simulation [17]–[19].

When resonators are used for extraction of material proper-
ties, data is obtained at discrete frequency points. Extrapolation
of the data would be needed to estimate the material properties

Fig. 11. Standard FR-4 substrate: measurement results versus rapid plane
solver for a 8 cm � 8 cm shorted resonator at various resonance frequency
points.

Fig. 12. Low-loss substrate: measurement results versus rapid plane solver for
a 8 cm� 8 cm shorted resonator at various resonance frequency points.

outside the frequency range of the resonances of the structures.
This is required, for example, to analyze the dispersion and
attenuation of digital signals, which are broadband in nature.
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Fig. 13. Standard FR-4 substrate: comparison of the dielectric constant and
loss tangent extracted from measurements versus constant-phase causal model.

When extrapolating the data, it is useful to consider that com-
monly used PCB substrates such as FR-4 tend to have an approx-
imately constant loss tangent in the frequency range of interest
[6], [19]. For this purpose, an average loss tangent value can be
used to obtain a simple broadband model for such dielectrics. A
constant loss tangent, however, implies that the dielectric con-
stant is frequency dependent according to Kramers–Kronig re-
lation. Actually, since the complex permittivity is a minimum-
phase function, the dielectric constant can be exactly defined
(up to a constant) for a given frequency-independent loss tan-
gent using the equation

(10)

where is an arbitrary positive constant, is the argument of
, and is the Laplace variable [14], [20]. This constant-

phase function has been fitted to the extracted dielectric constant
and loss tangent shown in Fig. 11. The result shown in Fig. 13
indicates a good fit of the function to the extracted data.

Note how the constant-phase function in (10) results in a
constant loss tangent, as shown in Fig. 13, whereas the fre-
quency-dependent behavior of the dielectric constant is captured
very well. Next, the obtained constant-phase function is used in
the rapid plane solver to incorporate the frequency-dependent
complex permittivity function. The comparison with measure-
ment results is shown in Fig. 14, indicating good accuracy in
both the location of the resonances, as well as the amplitudes of
the impedance peaks.

The constant-phase function has been fitted to the data shown
in Fig. 12 for the low-loss substrate as well. The comparison of
the extracted data versus the fitted model is shown in Fig. 15.
The extracted loss tangent in this case is about 1/3 of the
FR-4 substrate, demonstrating the capability of the presented
approach to characterize low-loss substrates as well.

The comparison of the simulation data using the constant-
phase model for the complex permittivity versus the measure-

Fig. 14. Standard FR-4 substrate: comparison of simulation versus measure-
ments.

Fig. 15. Low-loss substrate: comparison of the dielectric constant and loss tan-
gent extracted from measurements versus constant-phase causal model.

ments is shown in Fig. 16. A very good agreement can be ob-
served between the results.

IV. ANALYTICAL DEBYE MODELING OF SUBSTRATES

WITH CONSTANT LOSS TANGENT

For PCB dielectrics, the complex permittivity can be approx-
imated using a Debye model as

(11)

where and represent the strength and time constants of
various relaxation processes, and is the Laplace variable. The
order of the approximation can be chosen as high as pos-
sible as long as the extracted and are all positive and real
numbers. The Debye model is quite useful in time-domain sim-
ulations, as it allows the consideration of the frequency-depen-
dent material properties using an RC type of an equivalent-cir-
cuit model in SPICE or FDTD solvers. One example is shown in
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Fig. 16. Low-loss substrate: comparison of simulation versus measurements.

Fig. 17. Debye model of a lossy capacitor with a constant loss tangent.

Fig. 17, where the Debye model in (11) has been used to model
a lossy capacitor with a constant loss tangent. Based on (10), the
admittance of such a network is given by

(12)

where the subscript refers to the permittivity or the capaci-
tance calculated when the medium is replaced with free space.
The Debye model in Fig. 17 can then be considered as an ap-
proximation of this admittance.

Even though the vector-fitting algorithm [21] could be used
to obtain a rational function approximating (12), it cannot be
guaranteed that the resulting circuit would be of an RC type, as
shown in Fig. 17. On the other hand, for the case of a complex
permittivity described by a constant-phase function, as in (12),
a simpler model can be generated analytically without requiring
any curve fitting. The model shown in Fig. 17 for this purpose
has been used before in realization of general RC constant-ar-
gument driving-point admittances [22].

To adapt the approach in [22] to a lossy capacitor described by
a Debye model, the following parameters should be provided:

• : high-frequency asymptote of the capacitance;
• : upper frequency bound for the validity of the model;
• : loss tangent;
• : spacing factor to be chosen based on the required accu-

racy versus bandwidth of the model;
• : number of RC branches.

Fig. 18. Loss tangent approximated using the Debye model for the example of
� � �� F, � � �� rad/s, and ��� � � �����.

Fig. 19. Capacitance approximated using the Debye model for the example of
� � �� F, � � �� rad/s, and ��� � � �����.

Based on this input, the values of the circuit elements in
Fig. 17 can be obtained analytically following [22] as

(13)

(14)

(15)

As the number of RC branches in this network is increased,
the lower frequency bound for the validity of the model de-
creases, which results in increased bandwidth of the model.
To demonstrate the approach, consider the example with the
given parameters of F, rad/s, and

.
Fig. 18 shows the performance of the presented Debye model

to represent a constant loss tangent. The spacing factor can be
increased to use a lesser number of branches in the model. The
tradeoff is the increased sinusoidal variation around the desired
loss tangent, decreasing the accuracy of the model. By using a
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small and sufficient number of branches, perfect approxima-
tion of a constant loss tangent in the desired frequency range is
possible, as demonstrated in this figure. Note that a very accu-
rate model for a bandwidth of 4–5 decades was obtained using
15 branches in this example.

Fig. 19 shows the variation of the capacitance with frequency.
As expected, the capacitance approaches the high-frequency
asymptote at frequencies higher than . At very low
frequencies, the capacitance also approaches the parallel con-
nection of all the capacitors in the model.

V. CONCLUSION

This paper has presented a new approach for characterization
and modeling of the dielectric constant and loss tangent of sub-
strates used in chip packages and PCBs.

The extraction of the material properties is achieved by taking
measurements on a simple shorted waveguide resonator. Due to
the simple geometry of this resonator, it is possible to simulate it
very efficiently. In this paper, a rapid plane solver for a shorted
resonator has been introduced for the first time. Using this sim-
ulator, the dielectric constant and loss tangent is extracted by
overlapping the measurement results with simulation results.
Since this procedure involves iteratively adjusting the dielec-
tric constant and loss tangent in the simulator, the efficiency of
the presented simulator becomes very useful. A problem size of
five million unknowns was simulated within 30 s on a PC with
a 1.4-GHz clock frequency.

Measurements were taken on FR-4 and a low-loss substrate
to test the method. The extracted dielectric constant and loss
tangent were then fitted to a Debye model. For the first time, a
method has been presented that analytically generates a broad-
band Debye model. Independent of the method used to extract
the material properties, this new method of generating a Debye
model can be used on any substrate that exhibits an approxi-
mately constant loss tangent, which is true for most dielectrics
used in PCBs and chip packages. A broad frequency range can
be modeled using a small number of circuit elements, making
this approach very attractive for time-domain simulation of
lossy interconnects, transmission lines, and power/ground
planes in circuit simulators or FDTD type of solvers.
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