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Letters

Closed-Form Multipole Debye Model for Time-Domain
Modeling of Lossy Dielectrics

Arif Ege Engin , Member, IEEE, Ivan Ndip, Klaus-Dieter Lang, and Jerry Aguirre

Abstract—Lossy dielectrics in printed circuit boards and integrated cir-
cuit packages can be represented by using a Debye model. This allows
accurate signal and power integrity analysis, which depends on the accu-
racy of material properties of the board or package. Such a Debye model
needs multiple poles for accurate representation of the loss tangent over a
broad frequency range. Electromagnetic and circuit simulations can then
include the impact of frequency-dependent dielectric constant and loss. In
this letter, we present an efficient and closed-form multipole Debye model,
automating the modeling of lossy dielectrics for inclusion in time-domain
electromagnetic or circuit simulators.

Index Terms—Causality, complex permittivity, Debye model, dielectric
constant, loss tangent.

I. INTRODUCTION

L OSSY dielectrics in printed circuit boards and integrated circuit
packages result in a complex permittivity given by

ε = εr (1 − j tan δ)ε0 (1)

where εr is the dielectric constant, tan δ is the loss tangent, and ε0 is
the permittivity of free space. Kramers–Kronig relations for dielectrics
dictate that for lossy substrates (i.e., when tan δ > 0), εr will be fre-
quency dependent. Therefore, for broadband signal and power integrity
simulations, modeling a lossy substrate with a constant dielectric con-
stant can result in errors. For time-domain simulations, such a modeling
error can even create an unstable model response.

A physical model to represent the frequency-dependent variation of
the dielectric constant and loss tangent can be obtained by using a
Debye model as

ε = ε∞ +
N −1∑

n =0

an

s + bn

(2)

where an and bn are physically related to the strength and time con-
stants of various relaxation processes, ε∞ is the high-frequency asymp-
totic value of the permittivity, and s is the Laplace variable. The order
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Fig. 1. Infinite Debye model representing a lossy dielectric.

of the approximation N can be chosen as high as possible as long as
the extracted ai and bi are all positive coefficients. This ensures that
the obtained model represents a passive network over all frequencies
and, therefore, satisfies Kramers–Kronig relations for dielectrics.

A commonly used Debye model is obtained by using infinite number
of poles (i.e., as N approaches infinity) [1]. However, a finite-pole
Debye model as presented in (2) can be easily integrated in time-
domain electromagnetic simulators (e.g., based on the finite-difference
time-domain method), or in circuit simulators for transient analysis [2].

For substrates with a constant loss tangent, the complex permittivity
in (1) is a network function with a constant argument [3], [4] given by

ε = as−2δ /π ε0 (3)

where a is an arbitrary positive constant. Substituting s = jω indeed
yields a complex permittivity in a form similar to (1)

ε = a(jω)−2δ /π ε0 = aω−2δ /π cos δ(1 − j tan δ)ε0 . (4)

The complex permittivity in (3) is a nonrational function; hence, a
multipole Debye model in (2) is an approximate RC-network realization
of this complex permittivity. The Debye model cannot be obtained by
a straightforward application of the vector-fitting algorithm [5], since
it does not guarantee positive coefficients in (2). An efficient RC model
for interconnect capacitance has been obtained in [6], [7] and [8] based
on the approximate model for an RC constant-argument driving-point
admittances in [9]. An alternative infinite RC network representation
for constant-argument driving-point impedances is given in [10], which
can be converted exactly to the form presented in [9] after a change of
variables.

In this letter, we introduce a closed-form multipole Debye model for
the first time for substrates with a constant loss tangent.

II. MULTIPOLE DEBYE MODEL

The multipole Debye model in (2) can be interpreted as the
impedance of an RC network. For constant-argument driving-point
impedances as in (3), an infinite RC network representation can be
found following the approach presented in [9]. The resulting network
is shown in Fig. 1, where m = π/2δ and k is a spacing factor. Trun-
cating this infinite network results in the Debye model in (2).
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Fig. 2. Debye model in (2) of order N representing a lossy dielectric.

The first truncation can be made for all RC branches to the left of the
branch with the resistance R. At lower frequencies, these branches start
behaving mostly resistive because of the higher impedances associated
with the capacitors. We can then approximate the contribution of these
branches by adding all the resistances in series to obtain the total
resistance of this truncated part as

ε∞ = Rk−1 (1 + k−1 + k−2 + · · · ) =
R

k − 1
(5)

which provides us the truncated Debye model in Fig. 2.
In Fig. 2, the resistances are calculated from R = ε∞(k − 1). The

capacitances are obtained from C = 1/(Rω0 ) [9], where ω0 corre-
sponds to the upper frequency bound for the validity of the model. The
number of RC branches included in the multipole Debye model deter-
mine the bandwidth of the model. From the equivalent circuit model in
Fig. 2, we can finally obtain the coefficients of the Debye model in a
closed form as

ε = ε∞ +
N −1∑

n =0

ε∞(k − 1)kn

1 + skn m /ω0
. (6)

As an example, Fig. 3 shows the variation of dielectric constant and
loss tangent for ε∞ = 4ε0 , tan δ = 0.02, N = 10, and ω0 = 1010 .
The spacing parameter k determines the accuracy of the model. Using
a larger k improves the bandwidth of the model at the expense of larger
oscillations. Fig. 3 shows how the bandwidth of the model is increased
by changing k from 1.02 to 1.03. A critical observation in this figure
is the rounding-off of the edges of the loss tangent. For example, at
around 10 GHz, the k = 1.02 case starts approaching zero, hence loses
its accuracy, before the k = 1.03 case. This implies that the accuracy
can be increased by using a smaller spacing parameter k; however, the
order of the model N may need to be increased to compensate for the
rounding-off of the edges of the loss tangent.

Within the frequency range where the model is accurate, oscillations
around the correct value can be observed, especially for the k = 1.03
case in Fig. 3(b). Each cycle in these oscillations corresponds to an
RC term in the summation of (6). These cycles are completed at loga-
rithmically evenly spaced frequencies, with a ratio of km between the
frequencies of two successive cycles [9]. If km = 101/d , for example,
adding d elements in the Debye model would increase the bandwidth
of the model by a decade. Since d provides a more intuitive description
of the model bandwidth, in the following, we assume d will be the
actual input by the user instead of k.

In a typical practical case, the Debye model will be based on the
loss tangent tan δ and dielectric constant εr provided at the center
frequency ωc . We assume that the order N and the elements required
per decade d are also provided. The center frequency will be associated
with the middle term in the summation of (6), and it is desirable to
have an accurate Debye model at frequencies extending a few decades
lower and higher than the center frequency.

Based on the input parameters of εr , tan δ, ωc , N, and d, the coeffi-
cients in the Debye model (6) will be obtained as follows. The spacing

Fig. 3. Spacing parameter k determines the accuracy of the model. (a) Di-
electric constant. (b) Loss tangent for ε∞ = 4ε0 , tan δ = 0.02, N = 10, and
ω0 = 1010 .

parameter can be obtained from m = π/2δ as

k = 101/m d . (7)

The upper frequency bound ω0 can be related to the center frequency
of the bandwidth ωc as

ω0 = ωc 10
N −1
2 d (8)

since there are (N − 1)/2 terms increasing the bandwidth towards
higher frequencies from the center frequency at ωc .

Finally, the asymptotic value of the permittivity at very high fre-
quencies can be calculated as

ε∞ =
2εr ε0

k
N −1

2 (k + 1)
(9)

by expanding the infinite series calculation in (5) to the center branch
and considering that the center branch is transitioning at ωc [9] and
contributes only half of its resistance to the overall resistance.
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Fig. 4. (a) Dielectric constant. (b) Loss tangent for εr = 4.16 at 2.6 GHz,
tan δ = 0.024, and d = 1 (one element per decade). Incrementing the order of
the model by one increases the bandwidth of the model by a decade.

III. CHARACTERIZATION AND MODELING OF FR-4

An FR-4 board is characterized in [11] with a dielectric constant of
4.16 and tan δ = 0.024 at 2.6 GHz, which will be used as the input
parameters in the Debye model. Following the methodology in [6] and
[12], we also extracted the dielectric constant at the second and third
resonant frequency of the measured cavity resonator as εr = 4.11 at
4.2 GHz and εr = 4.09 at 5.2 GHz. The loss tangent was extracted
as tan δ = 0.024 at all three frequencies. Fig. 4 is based on these

parameters and using d = 1 (one element per decade). The loss tangent
is within ±7% of 0.024 for a bandwidth of two decades using N = 5.
Each additional element increases the bandwidth of the model by a
decade. The model can be made arbitrarily more accurate by using a
larger d; however, this would require a larger number of elements for
achieving the same bandwidth. Additional simulations have also shown
similar accuracy and bandwidth for various dielectric constants or loss
tangents.

IV. CONCLUSION

In this letter, we presented a closed-form multipole Debye model.
The model can be made arbitrarily more accurate and broadband by
increasing its order. The efficiency of the model can also be increased
with a tradeoff of introducing ripples in the dielectric constant and loss
tangent. For a typical example, the loss tangent was maintained with an
accuracy of ±7% where each additional element in the Debye model
increases the bandwidth by a decade.
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