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An Arnoldi Algorithm for Power-Delivery Networks
With Variable Dielectric Constant and Loss Tangent
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Abstract—The tracking-sensitivity algorithm is an efficient
method to calculate the changes in the network matrix of a circuit,
when a global parameter, such as temperature, is continuously var-
ied. In this paper, we apply the concept of tracking sensitivity on the
frequency-domain simulation of power-delivery networks (PDNs)
in chip packages and printed circuit boards. The global variable we
consider is the complex permittivity of the dielectric. We present a
methodology to calculate the change in the PDN impedance due to
a variation in the dielectric constant, loss tangent, or both. This in-
formation is useful not only to understand any deviations between
simulations and measurements, but also to understand the impact
of the variability of these dielectric properties on the performance
of the PDN. Using the tracking-sensitivity algorithm, we can effi-
ciently recalculate the impedance matrix after changing a global
parameter. The classical tracking-sensitivity algorithm was based
on a power series expansion. This paper presents a more accurate
approach based on the block Arnoldi algorithm.

Index Terms—Block Arnoldi, decoupling, ground bounce,
power-delivery network (PDN), power-integrity optimization,
simultaneous switching noise, target impedance, tracking sensi-
tivity.

I. INTRODUCTION

POWER and ground planes are necessary, in addition to
the decoupling capacitors, to reduce the impedance of

power-delivery networks (PDNs) on chip packages and printed
circuit boards (PCBs). The PDN impedance on a PCB is de-
fined to be between the power and ground planes, as shown in
Fig. 1. A low-impedance PDN helps to keep the voltage fluctu-
ations on the nominal dc power level within tolerances, in order
for the attached integrated circuits to function properly. Power
and ground planes, however, behave as parallel-plate waveg-
uide resonators, exhibiting impedance peaks at antiresonance
frequencies. These resonances are undesirable, since they result
in increased noise coupling and voltage fluctuations. Typical
PDNs are electrically large, have complicated structures for the
power and ground planes, and include many decoupling capac-
itors to maintain a low impedance. Hence, accurate simulation
of a PDN typically requires a computationally expensive elec-
tromagnetic simulation.

For power-integrity design, locations of the resonance fre-
quencies and the magnitudes of the impedance peaks at those
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Fig. 1. Decoupling capacitors (decaps) and power/ground planes separated by
a thin dielectric with a complex permittivity of ε.

resonances are very important. For power/ground planes, their
geometry as well as the dielectric material between them deter-
mine the resonance behavior. Hence, it is critical to have accu-
rate information about the dielectric constant and loss tangent,
as these parameters affect the impedance. These parameters,
however, may change from panel to panel, and even within a
panel on fabricated PCBs. Therefore, it is critical to understand
the impact of these global variables on the PDN impedance.

Recently, algorithms for efficient differential and large-
change sensitivity calculations of PDN impedance have been
developed [1]. These algorithms can efficiently capture the ef-
fect of the change in several parameters on the PDN impedance;
however, they cannot be applied for a global variable (i.e.,
a variable that modifies a significant number of elements of
the system matrix). For example, the large-change sensitivity
algorithm presented in [1] can exactly recalculate the solution
after the addition, modification, or relocation of a few decou-
pling capacitors or a small change in the geometry. However,
modification of a global variable, such as the dielectric constant,
requires inversion of the system matrix, which is prohibitive for
large systems. The tracking-sensitivity algorithm, on the other
hand, provides an efficient but approximate answer that matches
the first few block moments of the exact solution when a global
variable is modified. The presented tracking-sensitivity algo-
rithm, which is applicable for a global variable, has therefore a
different purpose and basis than the approach in [1].

In circuit design, calculation of the change in the network ma-
trix due to a variation in a global parameter can be done using
various tracking-sensitivity algorithms [2]–[4]. In this paper, we
propose a new tracking-sensitivity algorithm, based on a block
Arnoldi iteration, that is better suited for the large problems
that we will consider. This algorithm is similar to the more re-
cent model-order reduction techniques such as passive reduced-
order interconnect macromodeling algorithm (PRIMA) [5]. We
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apply the tracking-sensitivity approach on electromagnetic sim-
ulation of PDNs. For simulation of the PDN, we use the 2-D
finite-difference method.

II. TRACKING-SENSITIVITY ALGORITHM

We are interested in capturing the change in the impedance of
a network based on a continuous variation of a global variable.
The change in the global variable is denoted by K. In the 2-D
finite-difference method, we first build up the nodal admittance

matrix YN for the nominal value of the global variable. This
results in a matrix equation, which needs to be solved for the
given current excitations as

YN VN = I. (1)

The right-hand side is a matrix of size n × p, where the num-
ber of ports p is typically much smaller than the total number
of internal and external nodes n. We would like to obtain the
impedance parameters when the global variable is changed by
K. This results in a new matrix equation as

(YN + KYV )V = I (2)

where the subscripts N and V denote the nominal and variable
parts of the nodal admittance matrix, as in [2]. Once (1) is solved
for the nominal case, the tracking-sensitivity algorithm allows to
solve (2) for a continuous variation in K in an efficient manner.
Different algorithms, which are explained in the following, are
available for this purpose.

A. Matrix Power Series Method

In the matrix power series method [4], the solution is approx-
imated as

V ≈
k−1∑
i=0

KiVi. (3)

Each term in this summation can be obtained recursively by
solving

YN Vi+1 = −YV Vi (4)

where the first term is the nominal solution

V0 = VN . (5)

Since LU decomposition of YN is required only once in (1),
and successive iterations in (4) require only forward and back-
ward substitutions, the complexity of computing the coefficients
is low. Note the similarity of this approach to the asymptotic
waveform evaluation (AWE) method [6]. In AWE, the terms
Vi are called the moments of the frequency response V , where
K corresponds to the Laplace variable s. After the calcula-
tion of the moments, a Pade approximation is obtained in the
AWE method by means of matching the first few moments of
a rational function with the matrix power series. The purpose
of AWE is to create reduced-order models for efficient time-
domain simulation, whereas in the tracking-sensitivity method,
we are interested in frequency-domain response and the global
variable is a physical property rather than the frequency. More

recently, AWE has also been applied for fast frequency sweep
in electromagnetic simulations [7], [8]. A 2-D AWE method has
also been proposed for simultaneous frequency and permittivity
extrapolation in microstrip antennas [9].

B. Eigenvalue Method

The original tracking-sensitivity algorithm [2] was based on
solving an eigenvalue problem. Equation (2) can be rewritten as

V =
(

1 + KYN

−1
YV

)−1

YN

−1
I. (6)

The factorization YN

−1
YV = W D W

−1
, where D is a diag-

onal matrix containing the eigenvalues of YN

−1
YV yields

V = W
(
1 + KD

)−1
W

−1
YN

−1
I. (7)

Since (1 + KD) is a diagonal matrix, its inverse can be ob-

tained analytically providing an exact solution for V in the
form of a partial fraction expansion of the variable K [2], [10].
This form of tracking sensitivity is not suitable for large sys-
tems, since it requires the computation and storage of all of
the eigenvalues and eigenvectors. Another approach based on
the calculation of determinants has been proposed in [3], which
however, is also not suitable for large systems. Next, we propose
a new approach for large systems based on the block Arnoldi
iteration.

C. Block-Arnoldi-Based Tracking-Sensitivity Algorithm

In the block Arnoldi method, instead of calculating an exact

solution V using the eigenvalues and eigenvectors of YN

−1
YV ,

we find an approximation to the solution. This is accomplished
by the factorization

−YN

−1
YV = X H X

H
(8)

where X is a unitary matrix and H is an upper Hessenberg
matrix. With the definitions

A = −YN

−1
YV (9)

and

R = YN

−1
I (10)

X orthogonalizes the Krylov subspace defined by the column

space of [R AR A
2
R, . . . , A

k−1
R]. Similar to (7), we obtain

an approximation to the solution in terms of

V ≈ X
(
1 − KH

)−1
X

H
R (11)

which can be expressed as a partial fraction expansion after

diagonalization of H , which is a small square matrix of size
kp × kp. The approximate solution matches the first k block
moments of the exact solution [11]. This approach numerically
provides more accurate results compared to the matrix power
series approach, since the power iteration in (4) converges to
an eigenvector associated with the largest eigenvalue [10], and
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Algorithm 1. Block Arnoldi Algorithm for Complex Matrices

hence cannot recover information about other eigenvalues of the
system for even small values of k.

We modify the block Arnoldi algorithm presented in [5],
as shown in Algorithm 1. Note the following remarks on this
algorithm.

1) The matrices we are considering are in general complex
in contrast to the real matrices that are involved in model
order reduction of RLC circuits. Hence, we use the con-
jugate transpose denoted by the superscript H instead of
the transpose.

2) The inner for loop can be iterated multiple times to im-
prove orthogonality down to machine precision [5].

3) Since Arnoldi stops at i = k − 1, the last block column of

H is computed using step 10.
4) We keep the same sign notation, as in [5], which performs

Arnoldi on −A and not on A. To obtain the correct sign,
step 11 is necessary, as pointed out in [12].

5) The QR decomposition is calculated only for the first N

orthogonal vectors. In case I is a single vector, the QR
decomposition in steps 1 and 8 reduces to a simple vector
normalization. Since we are not interested in a macro-
model, but rather the tracking sensitivity, it is also possi-
ble to apply the Arnoldi algorithm for each right-hand-side

vector of I separately. This would also eliminate the need
to consider the gradual exact deflation [13] due to linearly
dependent vectors in the Krylov subspace.

6) The algorithm we present has matrix indices that consis-
tently start at 1.

In the next section, we present briefly how the matrices YN

and YV are formed in case of PDN simulations.

III. ANALYSIS OF POWER/GROUND PLANES

AND DECOUPLING CAPACITORS

Consider the power/ground planes on a chip package or PCB,
as shown in Fig. 1. An efficient way of calculating the impedance
profile of this structure can be developed based on the 2-D
finite-difference method [14], [15]. We make use of the fact that
the thickness of the dielectric is much smaller than the lateral
dimensions, hence the variation of the electric and magnetic

Fig. 2. Equivalent circuit representation for the example of a rectangular-
shaped power/ground plane pair with a discretization of 4 × 3. A current source
is connected to the lower left node and a decap is connected to the lower right
node.

fields with respect to the vertical z-direction can be neglected.
Then, assuming that there are no decoupling capacitors for the
time being, the voltage u(x, y) at any point P (x, y) can be
described with the 2-D Helmholtz wave equation

∇2u + k2u = −jJzωμd (12)

where k is the wave number, Jz is the current density in the ver-
tical direction, ω is the angular frequency, μ is the permeability,
and d is the dielectric thickness. The boundary conditions are
of Neumann type for the planes, which can have arbitrary bor-
ders or cut-outs. The five-point finite-difference discretization
of the Laplace operator (∇2) in (12) yields an equivalent circuit
representation, as shown in Fig. 2 [14]–[16], where

Z = jωμd + 2

√
jωμ

σ
coth(t

√
jωμσ) (13)

Y = jωε
h2

d
(14)

where σ is the conductivity of the planes, t is the thickness
of each plane, ε is the complex permittivity of the dielectric,
and h is mesh length [16]. To incorporate the effect of copper
surface roughness, an effective conductivity that is a function of
surface roughness and skin depth can be used [17]. The nodal

admittance matrix YN of the equivalent circuit model in Fig. 2
can be built-up as

YN V = I (15)

where each column of V is a vector of node voltages for the

corresponding current excitations on the same column of I .
Solution of this matrix equation provides the distribution of
voltage for any current excitation, which is equivalent to the self
and transfer impedances assuming a current excitation of 1 A at

a single node for each column of I . To build-up Y , each shunt
admittance at node p is added as

⎡
⎢⎣

. . .
· · · Y · · ·

. . .

⎤
⎥⎦

⎡
⎢⎢⎣

...
Vp

...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

...
Ip

...

⎤
⎥⎥⎦ (16)
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whereas, each series impedance between nodes p and q is added
as ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

. . .
· · · 1

Z · · · − 1
Z · · ·

. . .
· · · − 1

Z · · · 1
Z · · ·

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
Vp

...
Vq

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
Ip

...
Iq

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

The decoupling capacitors are simply included in the matrix
as additional shunt admittances with the admittance

YC =
1

1/(jωC) + jωL + R
(18)

based on a series RLC model for the decoupling capacitor.
Hence, the addition of a decoupling capacitor merely corre-
sponds to the addition of its admittance on the corresponding
diagonal element of the nodal admittance matrix, as in (16).

IV. TRACKING SENSITIVITY FOR THE COMPLEX PERMITTIVITY

Assume that we have assembled the nodal admittance matrix
YN for a nominal value of the complex relative permittivity εr ,
where ε = εrε0 . Since there is a constant shunt admittance Y to
ground at each node, and the global variable εr only affects that
admittance, we can express the nodal admittance matrix, when
the complex relative permittivity is changed by Δε as(

YN + Δεjωε0
h2

d
1
)

V = I. (19)

Comparing (19) with (2) yields

K = Δε (20)

and

YV = jωε0
h2

d
1. (21)

Hence, we can apply the Arnoldi-based tracking-sensitivity
algorithm presented in Section II. Note that the complex relative
permittivity is in the form of

εr = ε′r (1 − j tan δ) (22)

where ε′r is the dielectric constant. Hence, we can account for
changes in the dielectric constant, loss tangent, or in both of
these parameters, once the tracking-sensitivity algorithm is ap-

plied to obtain the approximate model. Also, YV is an identity
matrix (scaled with a constant); therefore, several matrix–matrix
products in the Arnoldi algorithm (in steps 3 and 10) reduce to
scalar-matrix products.

V. NUMERICAL RESULTS

A. Square-Shaped Plane Pair

A 2 cm × 2 cm square-shaped board is simulated with the
nominal dielectric constant of 4.0, and loss tangent of 0.01.
The dielectric thickness is 200 μm, and two ports are defined
on two diagonally opposite corners of the board. The mesh
length is chosen as 0.2 mm. Planes are made of copper with

a thickness of 35 μm. Using the tracking-sensitivity algorithm
with an order of k = 7, the simulation is repeated for a dielectric
constant of 4.5, and loss tangent of 0.025. The new simulation
result is also compared with the simulation that was started from
scratch, which is denoted as “exact result” in Fig. 3. In order to
quantify the comparison of data, the feature selective validation
(FSV) technique [18] has been applied. Between the “tracking
sensitivity” and the “exact result”, all three figures of merit of
the FSV method (i.e., the ADM, FDM, and GDM measures)
had a grade and spread value of “excellent”. For comparison,
between the “nominal simulation” and “exact result” for the
magnitude of Z12, grade value was “poor,” whereas the spread
value was “fair” to “poor”. Hence by applying the tracking-
sensitivity algorithm, the poor agreement has been improved to
an excellent agreement with the exact result.

The accuracy of the tracking-sensitivity algorithm decreases
if it is applied using fewer block moments (k), larger frequency
range, or larger change in the global variable (K). As an ex-
ample, the tracking-sensitivity algorithm only provides a “fair”
grade and spread in FSV figures of merit for the magnitude of
Z12, if the order of approximation is k = 2.

B. Power Island

Power islands have been proposed to provide reduction in
noise coupling between various areas of a power plane in [19].
One example is shown in Fig. 4, which is one of the cases dis-
cussed in [1]. The dielectric thickness of the test structure is
117 μm. In the nominal simulation, the dielectric constant was
assumed to be 5.0, and the loss tangent was assumed to be 0. As
these values do not represent the correct dielectric parameters,
the nominal results do not match the measurement results, as
shown in Fig. 5. Using the tracking-sensitivity algorithm, the
transfer impedance has been recalculated using a dielectric con-
stant of 4.1, and loss tangent of 0.02. The tracking-sensitivity
result now agrees well with the measurements.

The results can be recalculated for any value of the loss tan-
gent and dielectric constant with much smaller computational
complexity compared to restarting the simulation from scratch.
Hence, tracking sensitivity becomes an efficient approach to fit
simulation results to measurement results; or to consider the ef-
fect of the frequency-dependent complex permittivity on PDN
impedance. In order to fit simulation results to measured data,
the dielectric constant and loss tangent need to be iteratively
adjusted. If the fitting is done manually, it should be kept in
mind that the dielectric constant mainly influences the locations
of the resonance frequencies, whereas the loss tangent mainly
influences the magnitude of the impedance peaks. Also, since
the complex permittivity is now a variable, simulations can be
efficiently repeated for any frequency-dependent variation of
the dielectric constant and loss tangent.

In this example, the order of the model was k = 15. In general,
a larger k is required as the deviation between the nominal
simulation and recalculation gets larger. For most purposes, the
nominal dielectric parameters would be closer to the updated
parameters, compared to the example considered here; hence,
k = 15 would be sufficient.
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Fig. 3. Simulations based on tracking sensitivity for a 2 cm × 2 cm square-shaped board.

Fig. 4. Geometry of the power island and the bridge with a width of 0.5 mm
connected to the center of the power island’s bottom edge. All units are in mm.

To demonstrate the efficiency of the tracking-sensitivity al-
gorithm, this example was run at a single frequency point with
a fine discretization resulting in about 0.3M unknowns. The
standard solution [i.e., the direct solution of (1)] took 14.6 s,
whereas the Arnoldi iteration shown in Algorithm 1 took 14.7 s
(assuming that the LU decomposition is already available from

Fig. 5. Measured and simulated transfer impedance using the tracking-
sensitivity algorithm for ε′r = 4.1 and tan δ = 0.02, whereas the nominal case
was simulated for ε′r = 5.0 and tan δ = 0.

the direct solution) on a laptop PC with 3 GB of RAM and a
clock frequency of 1.4 GHz. Once the Arnoldi iteration was
complete, each additional simulation for a different value of the
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Fig. 6. A 14.5 cm × 8.5 cm board including five 10-nF decoupling capacitors.

Fig. 7. Application of the tracking-sensitivity algorithm for the board shown
in Fig. 6 without the decaps.

complex permittivity [i.e., calculation of (11)] took 0.7 s using
the tracking-sensitivity algorithm. Hence, the initial Arnoldi it-
eration took about the same time as the standard solution, but
afterward, there was a speed up of about 20X for each simulation
with a different complex permittivity.

C. Board With Decoupling Capacitors

Next, we consider the board shown in Fig. 6, which in-
cludes five 10-nF decoupling capacitors to suppress the cou-
pling between ports 1 and 2. The total board size is 14.5 cm ×
8.5 cm.

First, the transfer impedance of the bare board was measured.
In nominal simulation, the dielectric constant was 5.0 and the
loss tangent was 0. Note that it is not necessary to choose the
nominal loss tangent to be zero. We choose a zero loss tangent to
demonstrate the accuracy of the tracking-sensitivity algorithm
for a large variation of the global parameter. Using the tracking-
sensitivity algorithm, we adjusted the dielectric constant and
loss tangent to ε′r = 4.1 and tan δ = 0.02. By adjusting the
complex permittivity, a very good match is obtained between
simulation and measurements, as shown in Fig. 7.

Fig. 8. Application of the tracking-sensitivity algorithm for the board shown
in Fig. 6 with the decaps.

Next, this structure including the decoupling capacitors was
simulated with a full-wave electromagnetic solver, Sonnet1,
where the decoupling capacitors were added as ideal lumped
components. In the 2-D finite-difference method, the via and
pad inductance and resistance was included as 150 pH and
10 mΩ. In Sonnet simulation, the dielectric constant was 4.1
and the loss tangent was 0.02. As it can be seen in Fig. 8,
the tracking-sensitivity result based on the nominal simulation
agrees well with Sonnet results. For the nominal simulation,
once again we started with ε′r = 5.0 and tan δ = 0. This exam-
ples demonstrates that the tracking-sensitivity algorithm can be
applied also in the presence of decoupling capacitors.

VI. CONCLUSION

This paper presents a new tracking-sensitivity algorithm
based on Arnoldi iteration. We apply the tracking sensitivity
for efficient simulation of PDN impedances, where the complex
permittivity of the dielectric is variable. With this approach,
after an initial Arnoldi iteration using the nominal value of

1Sonnet 12.54, Sonnet Software Inc.
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the complex permittivity, we can rapidly generate simulation
results for different values of the dielectric constant and loss
tangent. The Arnoldi-based tracking sensitivity was observed
to be accurate to reproduce the PDN impedance for a typical
PCB substrate, even when the nominal simulation was done for
a lossless substrate. Simultaneously, the dielectric constant was
varied by more than 10%, without affecting the accuracy. Each
new simulation provided a speed-up of about 20X compared to
starting the simulation from scratch for a given example.

The presented approach is suitable in power-integrity simu-
lation of PDNs in applications, such as fitting the permittivity
used in simulations to match measurement data, or investigat-
ing various frequency-dependent permittivity models and their
effects on power integrity.
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